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ABSTRACT

     A simple genetic algorithm (SGA) was implemented on a
cluster of Linux PCs to search for the most likely fracture
networks in a soil column.  The objective is to evaluate the
performance of SGAs in a distributed computing
environment that is widely and inexpensively available to
environmental researchers and engineers.  The Beowulf
computer was built out of surplus personal computers at
Oak Ridge National Laboratory by scientists in the
Environmental Sciences Division (http://www.esd.ornl.gov).
The communication on the Beowulf is via ordinary Ethernet
connection private among the processors, with a peak
bandwidth of 10 Mbit/s. The CPUs are mostly Intel 486DX-
2/66 and Pentiums, with 16 - 32 MB of memory.  Most of
the software on the Beowulf is from the public domain.
Using the PVM message passing library and a manager-
worker paradigm, we seek to maximize the loads on CPUs
of dissimilar speed and memory size.  SGA is an inductive
search algorithm that bases upon a few simple operators
such as reproduction, crossover, and mutation.  The
underlying mechanisms of flow and transport phenomena in
structured soils with discrete fractures are simulated by the
computer code FRACTRAN.  In a generation of SGA,
hundreds of FRACTRAN simulations are required, which
consume the majority of the CPU time needed by the SGA
search process.  For an entire SGA search, tens of millions
of such simulations, often referred to as function evaluation
in genetic algorithms literature, are performed.  The
minimal communication between the manager and workers,
passing fracture networks represented in bit strings to the

workers and bit string fitness back to the manager, suggests
that small communication bandwidth is adequate to achieve
high performance. The manager-worker paradigm is also
highly effective in achieving load balance on heterogeneous,
networked computers such as the Beowulf.  In addition to
reporting the performance of the implementation, we also
explore the aspect of SGA related to information
constraints.  SGA may be trapped in local optima and
genetic drifting may ensue.  With additional information the
SGA may be steered away from local optima and the
uncertainty of the identified fracture networks may be
reduced.  Because multiple runs of the SGA search
algorithm are necessary to determine the least uncertain
fracture networks, a distributed computing environment
proves to be highly effective.

INTRODUCTION

     The advent of Beowulf-style computers has brought
cluster computing within the reach of many environmental
scientists [e.g., Hargrove and Hoffman, 1999].  Beowulf
personal computer (PC) clusters were first devised by
scientists at NASA Goddard Space Flight Center (see
http://www.beowulf.org) to enable earth and space science
applications on low cost, off-the-shelf computer
components.  The NASA Beowulf project was also
facilitated by the freely available Linux operating system.
The open source nature of Linux allows programmers to
enhance the operating system to meet the requirements of
cluster computing (see http://www.opensource.org).  As a
result, a collection of tools are freely available on the
Internet to assist in the building of Beowulf-style PC
clusters (http://www.beowulf.gov).  The Beowulf cluster in
the Environmental Sciences Division at Oak Ridge National
Laboratory (ORNL) was built out of surplus personal
computers.  The PCs are mostly Intel 486DX-2/66 and
Pentiums, with 16 - 32 MB of memory, connected by



ordinary Ethernet with a peak bandwidth of 10 Mbit/s
(Hoffman and Hargrove, 1999).
     Various science applications have been successfully
demonstrated on the ORNL Beowulf cluster [e.g., Hargrove
and Hoffman, 1999; http://stonesoup.esd.ornl.gov]. This
paper describes a mechanistic-based genetic algorithm that
is used to search for near-optimal fracture networks in
laboratory soil columns.  Genetic algorithms (GAs) are
inductive search algorithms that explore and exploit the
similarity among individuals within a population [Goldberg,
1989].  Often times the most expensive kernel of a GA
application is the evaluation of the fitness functions.  In our
case, the calculation of fitness involves solving a system of
linearized equations derived from the conservation laws of
mass and momentum.  Fortunately the evaluations are
independent of each other and can be carried out in parallel.
This class of GA search problems is therefore highly
amenable to the low bandwidth, high processor power
nature of Beowulf clusters.
     The objective of this research is to evaluate the
performance of SGA in the distributed computing
environment of Beowulf-style PC clusters.  Using a simple
genetic algorithm (SGA), a fracture flow and transport code
for structured soils, and the PVM message passing library
and a manager-worker paradigm, we seek to maximize the
loads on CPUs of dissimilar speed and memory size.  The
timely evaluation of the fracture networks within SGA

populations enables us to identify the near-optimal fracture
networks and the appropriate constraints for the SGA search
algorithm.  Performance of the SGA search algorithm on the
Beowulf cluster is reported.  Implication of the SGA search
constraints on the characterization of the uncertainties
associated with the near-optimal fracture networks is
discussed.

FLOW AND TRANSPORT IN FRACTURED POROUS
MEDIA

     The governing equations for the movement of fluids and
solutes in fractured porous media are:
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where, for the matrix domain, Kij is the hydraulic
conductivity, x1 and x2 are the spatial dimensions, h is the
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Fig. 1. (a) Schematic of laboratory soil
columns, with inflow at the bottom and outflow
at the top;  (b) GA binary string illustrating
mapping from fracture segments in (a) to
positions in the string in which the status of the
fracture segments are coded into the binary 1
(active) and 0 (inactive).



hydraulic head, c is the solute concentration, t is time, θ is
water content, q is specific discharge, Dij is the
hydrodynamic dispersion coefficient as given in Bear
[1972]; for the fracture domain, 2b is the fracture aperture,
Kf is the hydraulic conductivity as defined in Sudicky and
McLaren [1992], hf is the hydraulic head, l is the spatial
dimension along the fracture, cf is the solute concentration in
the fracture, and Df is the hydrodynamic dispersion
coefficient as given in Tang et al. [1981].  The last two
terms in eq. (3) account for the fluid mass loss and gain,
respectively, due to mass transfer with the matrix domain.
Similarly, the last two terms in eq. (4) are the solute loss and
gain, respectively.  Equations (1) - (4) with their boundary
conditions are implemented in the computer code
FRACTRAN [Sudicky and McLaren, 1992] which is our
computational kernel in the SGA search algorithm.

     To enable the simulation of flow and transport in a
fractured porous medium, one needs to specify the
parameters identified above.  For this application, the
hydraulic conductivity, dispersivity, and water content of
the matrix and fracture domains were measured directly
from laboratory experiments or calculated theoretically
using fracture aperture sizes [Gwo et al., 1998].
Additionally, one would need to implement a finite-
difference grid to identify the individual matrix blocks and
fracture segments, the initial conditions of solute
concentrations in these structures,  and the boundary
conditions that are the driving force for the movement of the
fluids and solutes.  A two-dimensional soil column with a 4
(horizontal) by 8 (vertical) grid is used for our simulations
(Fig. 1a).  We therefore have 32 matrix blocks and 52
candidate fracture segments.  These segments are subject to
the manipulation by the SGA to select the near-optimal
fracture networks.  The hydraulic condition of the soil
column is assumed to have reached steady state, and the
matrix and fracture domains are in hydraulic equilibrium.
The soil column is assumed initially depleted of the solute
and a pulse of the solute is injected at the bottom of the soil
column, followed by another pulse of the carrying fluid
without the solute (Fig. 1a).

A PARALLEL SGA SEARCH ALGORITHM

     The finite difference grid depicted in Fig. 1a is encoded
into a bit string of length 52.  The numbers of the fracture
segments correspond to the positions of the binary bits (Fig.
1b).  The binary bits encode the status of a fracture segment,
either active (on as 1’s) or inactive (off as 0’s).  The binary
string in Fig. 1b therefore represents a vertical fracture
centered in the soil column from bottom to top (Fig. 1).
Three GA operators, reproduction, crossover, and mutation

[e.g., Goldberg, 1989], are used to manipulate a population
of 128 individuals.  These individuals are generated
randomly for the first generation and subsequently selected
for the GA operators according to the following fitness
function:
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where N is the number of solute breakthrough curves
(BTCs) presented to the SGA, n is the number of
measurements on a BTC, ci and ci* are the calculated and
measured solute concentration, respectively, α is the
number of matching surface features, e.g., exposed flowing
fracture segments, among a total of A, and σRMSE is the
standard deviation of the root mean squared error (RMSE).
The SGA terminates its search when a stopping criterion is
met or the number of allowable generations, 128 here, is
exhausted.  Various methods of selecting winning
individuals for reproduction are available for SGA search
[e.g., Goldberg, 1989].  Among the methods tested, i.e.,
roulette wheel selection and tournament selection with or
without replacement, tournament selection without
replacement produces the best outcome.  We also tested
single and multiple point mutation and uniform crossover
[Goldberg, 1989] and it was found that uniform crossover
performs better for the encoding scheme described above.
We hereby restrict our discussion in this paper to
tournament selection with uniform crossover.

     Parallel implementation of the SGA search algorithm
utilizes the parallel virtual machine (PVM) library [Geist et
al., 1994] and a manager-worker paradigm [Mahinthakumar
and Gwo, 1999].  The manager consists of an SGA Fortran
code (written by Ulrich Hermes of the University of
Dortmund, Germany) within a driver routine that doles out
FRACTRAN simulations to the workers that report
finishing a previously assigned job.  The workers are
individual FRACTRAN processes on the Beowulf compute
nodes that receive the encoded binary string and carry out
the flow and transport simulations.

PARALLEL PERFORMANCE OF PVM VIRTUAL
MACHINES

     To test the performance of the parallel SGA search
algorithm on the ORNL Beowulf cluster, we ran a series of
five-SGA-generation simulations, using combinations of
Pentiums and 486DX-2/66’s.  The communication and child
process spawning times account for a small fraction of the
total execution time (Fig. 2, all CPUs are Pentium 80-200
MHz). Nonlinear scaling behavior is expected for



processors of dissimilar CPU speeds. However the
performance of the virtual machine appears to encounter a
threshold with more than 10 Pentiums. The performance
threshold is caused by the faster CPUs waiting on the slower
CPUs during the last few FRACTRAN simulations of each
SGA generation.  The manager routine does not discern a
fast CPU from a slow one and thereby try to optimize the
virtual machine.  Because the SGA population is of fixed
size, the optimization should be straightforward.
Alternatively, one may use a subset of the 22 Pentiums, e.g.,
10, and the speed up is close to 10 fold.  For this particular
application, this option is equally attractive.
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Fig.2 Parallel performance of all Pentium PVM virtual
machines up to 22 CPUs.
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Fig. 3. Parallel performance of all Pentium and Pentium-
486DX-2/66 PVM machines.

     The performance threshold of the all Pentium virtual
machines is also complicated by the fact that the CPU
speeds are in a relatively narrow range of 80 MHz to 200
MHz.  Putting together a virtual machine of contrasting
CPU speeds, however, defeats the purpose of Beowulf
clusters, unless the particular application warrants such
combination.  Nevertheless, we are interested in the relative
performance between an all Pentium virtual machine and a
Pentium-486DX-2/66 mixed virtual machine.  Shown in

Fig. 3 is a comparison between Pentium-486DX-2/66 virtual
machines of fixed size (22 CPUs) and all Pentium virtual
machines of variable size (1 - 22 CPUs).  The performance
of a 22 CPU Pentium-486DX-2/66 virtual machine is
similar to that of a Pentium virtual machine at
approximately 4 to 6 CPUs.  Replacing more 486DX-2/66’s
with Pentiums in the 22 CPU Pentium-486DX-2/66 virtual
machines does not improve the virtual machine’s
performance, because of the synchronization required at the
end of each SGA generation.

SGA SEARCH CONSTRAINTS AND FRACTURE
NETWORK UNCERTAINTY

The SGA search algorithm, not unlike other search methods,
may be trapped in local optima.  This is likely to occur
particularly when the search space is not appropriately
constrained.  For example, in typical laboratory tracer
injection experiments, the soil column is assumed a one-
dimensional flow and transport domain, and only one tracer
breakthrough curve (BTC) is collected [Jardine et al., 1993].
Mixing or averaging is likely to smooth the signals of
individual tracer parcels exiting at various locations along
the exit cross section.  Presenting one single BTC to the
SGA may not be enough to appropriately constrain the
search space for a structured soil in which the structure may
very likely be multidimensional.

     The one-dimension assumption, implying symmetry
perpendicular to the bulk flow direction, is also inherent to a
simple vertical fracture running centrally from bottom to top
of the soil column (Fig. 1a and Fig. 4a).  The SGA found the
global optimum at generation 45, with the aide of one single
BTC (data not shown).  This symmetry assumption,
however, results in the SGA being trapped in local optima
for a nonsymmetric configuration (Fig. 4b).  The global
optimum emerges at generation 77 after two exposed
flowing fracture segments (positions 1 and 8 in Fig. 1a) are
also presented to the SGA and the individuals with the two
segments in their binary strings are rewarded with the last
term in eq. (5).  This same combination of information, one
single BTC and two exposed fracture segments, however, is
not able to guide the SGA away from local optima for the
tortuous fracture network in Fig. 4c.  The situation is not
remedied until three breakthrough curves along the exit
cross section, in addition to the two exposed fracture
segments, are presented to the SGA.  The global optimum is
identified at generation 48 (Fig. 4d).

    Projecting the findings above to laboratory and field
applications, one needs to characterize the uncertainty of the
SGA-found fracture networks, given that true global optima



are unlikely to be available.  For laboratory soil column
experiments, RMSE is frequently used to examine how a
curve-fitting or parameterization procedure performs.  Often
the underlying mechanisms of flow and transport are
soundly based upon first principles, but the RMSE is used

Fig. 4. Three fracture networks of increasing complexity (a)
- (c) and (d) the SGA convergence history of (c).

without further examination of the model assumptions [e.g.,
Jardine et al., 1993].  Presented in Fig. 5a is the true BTC of
the tortuous fracture network (Fig. 5d) and those of the other
two near-optima found by the SGA (Figs. 5b and 5c).
Visually the BTCs agree with the true BTC very well and
the RMSEs are very small.  However, the fracture networks
are, in fact, local optima.  They bear little resemblance with
the global optimum.  Their fracture-matrix contact areas are
larger than that of the global optimum and may result in a
much larger mass transfer rate estimation after being

upscaled to field soils and geological formations.  This
result suggests that more rigorous SGA search end point
measures must be devised and the uncertainty regarding
SGA near-optima must be carefully examined.

Fig. 5. Two SGA near-optima (b) and (c), the calculated
BTCs (a), and the known solution (d).

SUMMARY AND CONCLUSION

     We presented a mechanistic-based, parallel SGA search
algorithm to identify near-optimal fracture networks in
structured porous media.  Performance data of the search
algorithm was collected on the ORNL Beowulf-style Linux
cluster.  The PVM virtual machine using up to 22 Pentiums
(80 to 200 MHz) has an optimal performance near 10 CPUs.
Above 10 Pentiums, the performance encountered a
threshold which cannot be overcome without further
optimization of the manager routines.  The cause of the



degradation is the time used to wait on the slower
processors to finish the last few FRACTRAN simulations of
an SGA generation.  Simulations with larger SGA
population size may be less vulnerable to this performance
degradation.  This problem associated with the manager-
worker paradigm on heterogeneous clusters was further
manifested by the 22 CPU Pentium-486DX-2/66 virtual
machines.  Performance of the SGA search algorithm on
this latter class of virtual machines suggests that, against our
intuition, replacing the slower 486DX-2/66’s with Pentiums
may not improve the performance of the virtual machine.

    We also investigated the effect of information constraints
on the SGA search algorithm.  Without appropriate
information to constrain the SGA search space, it is likely
that the SGA may be trapped in local optima.  This finding
suggests that the near-optimal fracture networks identified
by the SGA, especially those within laboratory and field
soils and geological formations in which the true fracture
networks are rarely known, may need to be examined
carefully to determine their associated uncertainties.
Without reducing these uncertainties, field mass transfer
rates estimated using the upscaled, SGA-found fracture
networks may be over-estimated.
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