Tower Representativeness

Bizjack &

PLAN

RESULTS

How well do flux towers observe the landscape?

Depicting a northern Wisconsin forest by integrated ecology, dendrochronology and remote sensing

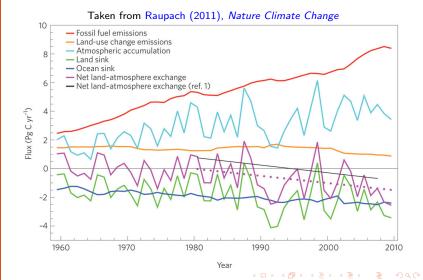
Matt Bizjack¹, Bjorn Brooks²*

University of Chicago, Department of Geophysical Sciences
 University of Illinois, Urbana-Champaign, Dept. of Atmospheric Sciences
 * Presenting author

Sept. 24, 2012

Problem Statement: Where's the missing sink?

Tower Representativeness


Drooks

BACKGRND

PLAN

RESULTS

.

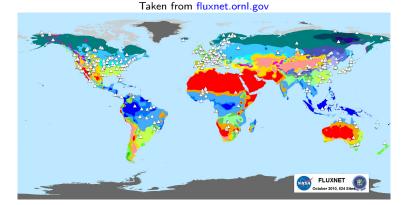
Measuring atmospheric CO_2 fluxes from the bottom up

Tower Representativeness

Bizjack & Brooks

BACKGRND

PLAN RESULTS ANALYSIS • Eddy covariance towers observe instantaneous exchanges of carbon, water, and energy.


Measuring atmospheric CO_2 fluxes from the bottom up

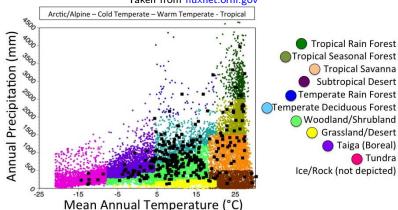
Tower Representativeness

Brooks

BACKGRND

PLAN RESULTS FluxNet is a global cooperative of 500+ continuously running towers, about one-fifth of which are in North Am.

Network coverage in climate space


Tower Representativeness

Bizjack & Brooks

BACKGRND

PLAN RESULTS • Sampling of FluxNet towers across temp.-precip. regimes

Taken from fluxnet.ornl.gov

'Scale me up Scotty'

Tower Representativeness

Bizjack & Brooks

BACKGRND

PLAN RESULTS

- Flux towers are indispensable for site level (1 km²) whole ecosystem monitoring & verification
- What about using them on regional scales?
- Tall towers; Upscaling Xiao 2008; Jung 2009; Sulkava 2011

Obstacles to upscaling

Tower Representativeness

Bizjack & Brooks

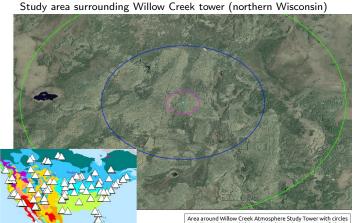
BACKGRND

ZESULTS

- 1 Limited global sampling network
- 2 Landscape heterogeneity (but see representativeness study by Hargrove, Hoffman & Law 2003)
- Interannual variability

Study site: Northern Wisconsin

Tower Representativeness


Bizjack &

BACKGRND

PLAN

RESULTS

ANALYSIS

at 0.5km, 2.5km, and 5km radii outlining the extremes of 1km2, 5km2, and 10km2 square plots around the tower.

Here's what we did

Tower Representativeness

Bizjack & Brooks

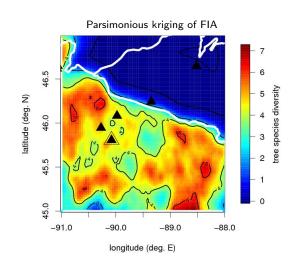
BACKGRNE

PLAN RESULTS

- Forest Inventory Analysis data
- Multi-band surface reflectance 2006-2009 from Landsat
- New data from one Wisconsin ChEAS tower

Forest Inventory Analysis

Tower Representativeness


Bizjack &

BACKGRNE

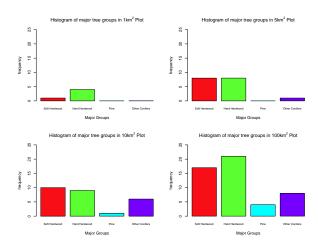
PLAN

RESULTS

ANIALXCIC

Forest Inventory Analysis

Tower Representativeness


Brooks

BACKGRNI

PLAN

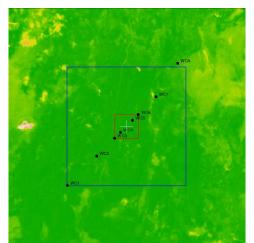
RESULTS

Histogram of FIA data on community composition across domain sizes

Landsat Normalized Difference Vegetation Index

Tower Representativeness

Bizjack &


BACKGRND

PLAN

RESULTS

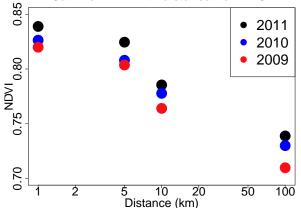
A B LA L 3/C L

Domain-wide NDVI

Landsat Normalized Difference Vegetation Index

Tower Representativeness

Biziack &


BACKCBNL

DIAN

RESULTS

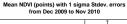
Growing season NDVI across domain sizes

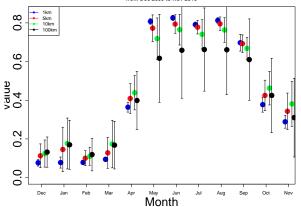
Summer NDVI with distance from W.C.

Landsat

Tower Representativeness

Brooks


BACKGRNI


PLAN

RESULTS

ANALYSIS

Monthly NDVI across domain sizes

Sample plots

Tower Representativeness

Bizjack & Brooks

BACKGRINI

LAN

RESULTS

Table: Plot descriptions

Plot	Lat,Lon	Canopy Cover	Notes
WC1	45.78,-90.11	65%	Elongate clearing trending East-West.
			Understory dominated by ash saplings
WC2	45.79,-90.09	95%	Slopes east. West half is 2m higher than east.
			Dense understory of ironwood/maple saplings
WC3	45.80,-90.08	85%	Relatively clear understory
WC4	45.80,-90.08	85%	Relatively clear understory with
			small area of hardwood saplings
WC5	45.80,-90.07	85%	Maple dom., rltv. open understory, few h'dwood
			sap. Grass, leaf litter. SW corner 2m ¿ NW
WC6	45.81,-90.07	85%	RItv. open understory, some shrubs and
			hardwood saplings. Ferns, grasses
WC7	45.81,-90.06	60%	Aspen, even aged domin. Understory mix h'wood
	,		blkbry. Litter, downed trees. Moist soil. Frns, grs.
WC8	45.82,-90.05	80%	Not planned loc. Cedar dom. Moist fen. Moss,
	,		treefall. Supressed hawood. Many dead trees.
			• 1 = 2 1 B 2 1 E 2 1 E 2 1 E 2 1 B 4 C

Sample plots

Tower Representativeness

Bizjack &

BACKGRNE

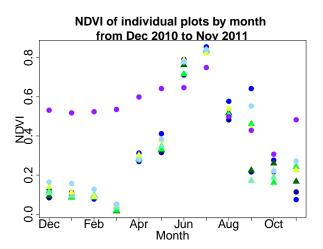
RESULTS

RESULTS

Table: Plot biometrics

	Tree	Avg/Total	Max/Min	Total	Biomass	
Plot	Cnt.	DBH (cm)	DBH (cm)	biom. (kg)	(Mt/ha)	Species
WC1	28	17.2/482.0	5.0/61.5	10615.9	212.3	BW HL
WC2	34	16.8/572.5	5.9/51.4	10799.0	216.0	BC IW
WC3	23	25.3/581.4	7.9/63.3	11590.5	231.8	BW GA
WC4	41	19.4/796.4	5.2/46.9	13570.4	271.4	BW GA
WC5	48	17.5/839.5	6.0/33.3	8866.0	177.3	BW IW
WC6	73	15.0/1093.4	5.0/56.2	8575.4	171.5	BO BW
WC7	55	11.5/629.9	5.0/21.9	1921.3	38.4	QA PB
WC8	86	14.6/1255.1	5.2/40.4	4361.1	87.2	HL WC

Landsat


Tower Representativeness

Bizjack &

BACKGRND

PLAN

RESULTS

NDVI as an indicator of plot characteristics

Tower Representativeness

Bizjack & Brooks

BACKGRND

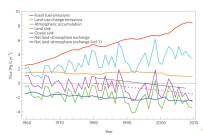
RESULTS

RESULTS

Table: Comparison of 30 m-NDVI to 22 m-sample-plot data. Data are mean centered & normalized. This shows skill of Landsat as proxy at plot scale. Correlations (r) to NDVI across 8 plots are also given

Plot	Ann.NDVI	No.Trees	Tot.DBH	Tot.Bmass			
WC1	-0.80	-0.93	-1.10	+0.47			
WC2	+0.08	-0.66	-0.76	+0.52			
WC3	-0.55	-1.16	-0.73	+0.72			
WC4	-0.43	-0.34	+0.06	+1.24			
WC5	-0.55	-0.02	+0.21	+0.02			
WC6	-0.17	+1.11	+1.14	-0.05			
WC7	+0.08	+0.30	-0.55	-1.77			
WC8	+2.35	+1.71	+1.74	-1.14			
$NDVI\ r$	_	0.76	0.70	-0.58			

Re-cap of motivations


Tower Representativeness

Bizjack & Brooks

BACKGRND

RESULTS

- Inv & Fwd model estimates still lack capability to verify the location & interannual variability of ecoregions needed to resolve the missing sink
- ② Because of (1) we do not know how to properly parameterize carbon exchange processes as a function of scale (cf. Desai 2011)
- 3 Consequently we also do not agree no how to evaluate models when confronted with observations of C exchange

Analysis of FIA and Landsat against the site level data

Tower Representativeness

Bizjack & Brooks

BACKGRNI

PLAN

RESULT:

- ① We sampled 0.2% of the total WC footprint (1 km²) and 0.02% of the 5 km² area. We found twice the tree diversity of FIA for the WC footprint area, but about the same diversity for the 5 km² area suggesting that FIA similarly represents less than a 1% sampling of trees in the local area
- 2 Pixel vs. plot comparison shows that Landsat NDVI has a weak neg. relationship to AGB $(r \sim -0.6)$, but may be suitable indicator for tree density and DBH $(r \sim 0.7)$
- Or NDVI/AGB relationship reflects lack of species specificity in surface reflectance information
- Tree cores analysis (ongoing) will inform how significant missing species specificity is to carbon uptake rate

Upscaling caveats: WC over-represents vegetation cover and AGB

Tower Representativeness

Brooks

BACKGRNI

PLAN

RESULT:

- (To the level that NDVI reflects tree density & DBH) the footprint $(1\,\text{km}^2)$ of WC **over represents** the amount of vegetation cover of the larger 100 km domain by $\sim\!10\%$
 - However lack of sp. specificity in Landsat data & weak correlations to plot data suggest inferences about biomass (or C-uptake) from NDVI alone would not be realistic
- Plot level estimates indicate that AGB is 20% greater within the WC footprint than at the 5 km² scale
- 3 Although FIA and sample plots indicate that WC footprint lacks the heterogeneity of communities represented at 5 km scale and greater tree cores will determine whether or not this translates into significant sampling limitation of historical carbon uptake

Acknowledgements

Tower Representativeness

Bizjack &

BACKGRNI

PLAIN

KLSULIS

- ullet PalEON and National Science Foundation grant #1065848
- Michael Dietze (Bost. U), Shawn Serbin (UW-Madison),
 Ankur Desai (UW-Madison), Linda Parker (USFS)
- This presentation: www.climatemodeling.org/~bjorn/