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From global climate models to local impact

Evacuating millions is not an
'effective or sustainable’
response to hurricane threats.

From left to right: Katia, Irma and Jose hurricanes
NOAA, 2017

CNBC, September 2017
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September 2017: HurrlcaneIRMA Domlnlcan Republic
Reuters, 2017



A challenge for regional climate studies

There are many locations for
which no observations exist.

105° W 90’ W Map of Canada
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Gridded products

A replacement for pure observational data

Some existing gridded products:

« CaPA
« NRCan
« PRISM...

Station

Grand Canyon temperature map:
PRISM incorporates the effects of elevation

Grid Cell

Credit: Daly, 2016




Gridded products
From GCMs...

 General circulation model (GCM):

A system of interacting mathematical model

* Not data-driven.

» Based on scientific first principles
« Meteorology
» Geophysics
* Oceanography...

» Discretization into grid boxes.

Output: Projections + Reanalysis

Horizontal Grid
(Latitude-Longitude) |

Vertical Grid )
(Height or Pressure) |

Physical Processes in a Model

solar  terrestrial
radiation radiation
[ i

ATMOSPHERE
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Credit: A. Banerjee, C. Monteleoni, 2014



Gridded products
... To reanalysis datasets

GCMs are also used to obtain the gridded reanalysis products as a
replacement for pure observational data.
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Credit: EUJRC, 2017



Climate downscaling

Two major approaches:

« Dynamical downscaling
=» physically consistent
=» computationally expensive
=» not fine-grained enough

- Statistical downscaling
=> relatively inexpensive
=>»challenging if insufficient historical data
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Recent work on CNNs for downscaling

R . . .

(a) Original SST field (b) Bicubic reconstructed SST (¢) SRCNN reconstructed SST

(e) Bicubic reconstructed gradient (f) SRCNN reconstructed gradient

(g) Bicubic reconstruction residuals (h) SRCNN reconstruction residuals (i) Residuals gain (SRCNN vs. Bicubic)

Fig. 4. Top row: Original and reconstructed SST fields. Middle row: Original and reconstructed gradient magnitudes. Bottom row: residuals between original
and reconstructed SST fields (g and h), and residuals difference between bicubic and SRCNN reconstructed SST fields (i).

(Ducournau and Fablet, 2016)
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Recent work on CNNs for downscaling
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Figure 3: Layer by layer resolution enhancement from
DeepSD using stacked SRCNNs. Top Row: Elevation, Bot-
tow Row: Precipitation. Columns: 1.0°, 1/2°, 1/4° and 1/8°
spatial resolutions.

(Vandal et al, 2017)
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Recent work on CNNs for downscaling

Low Resolution Image Super Resolution Image High Resolution Image
(Generated) (Ground Truth)

Figure 7. Generated climate image samples from pixel recursive super resolution model. Red represents cloud fraction(clt), Green
represents eastward near-surface wind(uas), Blue represents northward near-surface wind(vas). Cyclone center is distinguished as dark
cyan cluster on right-side ground truth image. (Left : Low resolution input. Center : Generated climate image output. Right : Ground

Truth input.)
(Kim et al, 2017)

12



Outline

3. Motivation and proposed downscaling framework



Proposed downscaling framework

Objective:

Statistical downscaling method that learns from gridded reanalysis data
and local station data.

Used for: Task 1 : downscaling to locations with observational record,

Task 2: downscaling to locations without observational
record;
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Proposed downscaling framework

Inputs  Reanalysis datasets

Target Weather stations observational records

Models MLR, ANN, ELM, LSTM

52.5°N@

50.0°N@

47.5°Ng

122.5°W

120.0°W

117.5°W
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Model development

Task 1: Downscaling to locations with observational record

52.5°N
o Predictors: Predictand:
Reanalysis values Observed values

Ahk

50.0°N |
1 " Training dataset
*
s1
47.5°N |
@ Testing dataset

‘V’

45.0°N . .
125.0°W 122.5°W 120.0°W 117.5°W
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Model development

Task 2: Downscaling to locations without observational record

Predictors: Predictand:
Latitude, Longitude, = Reanalysis values Observed values
Elevation
52.5°N T T £
+12 s9
50.0°N
1 + 9 s11 Training dataset
A1
47.5°N
s12
‘V'
A”L
45.0°N : : )
125.0°W 122.5°W 120.0°W M7.5°W 41 Testing dataset
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Learning model 1/3
Artificial Neural Network

- e
- -

Y Pt Feature Learning Regression
Weight, a u-."] """" ay Activity
--------------------------- ) (iterative tuning of parameters)

Training )17 ~ Neural Network Space e

Algorithm with | 77T m e
@ and b, as
weights / biases

H set by trial and
error, chosen arbitrarily

t=1,2...N

- -
- - -
L L L L

(Deo et al., 2017)
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Learning model 2/3
Extreme Learning Machine

Feature Learning Regression
Activity
Activation :> <. 3 <:l No tuning of parameters

Function
G(a, b, x)

H hidden nodes chosen
randomly and automatically

(Deo et al, 2017)
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Learning model 3/3
Long Short-Term Memory

Input gate: scales input to cell (write)
Output gate: scales output from cell (read)
Forget gate: scales old cell value (reset)

(Graves, 2015)
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Experiment

Climate variables: daily air temperature

Study area: British Columbia, Canada

Data:

» Local observations (OBS): Environment and Climate Change Canada Network
* Global models (GCM): NCEP/NCAR reanalysis dataset

60° N

Learning algorithms:
MLR, ANN, ELM, LSTM.

55N

50° N

415 W

135" w

130° W 125" W 120 W

British Columbia, Canada
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Results

Task 1: Downscaling to locations with observational record

. Task 1
Station
Method Model structure RMSE R? R?%
Inc.
| ANN (16-32-1) 1.92 0.91 2%
2 ANN (16-25-1) 2.59 0.94 1%
3 LSTM (16-20-1),Ib=6 1.30 0.94 11%
4 ANN (16-27-1) 1.03 0.94 3%
5 ANN (16-33-1) 4.00 0.84 3%
6 LSTM (16-20-1),1b=6 2.13 0.96 4%
7 ANN (16-29-1) 1.30 0.92 2%
8 ANN (16-19-1) 0.85 0.96 1%
9 LSTM (16-20-1),Ib=6 2.18 0.95 3%
10 LSTM (16-20-1),1b=6 1.98 0.95 4%
11 ANN (16-25-1) 1.34 0.95 1%
12 LSTM (16-20-1),Ib=6 2.28 0.94 5%

24



Results

Task 2: Downscaling to locations without observational record

. Task 2

Station

Method Model structure RMSE  R? R2%

inc.

| ANN (19-35-1) 1.83 0.92 18%
2 ANN (19-35-1) 2.68 0.93 15%
3 LSTM (19-20-1),Ib=6 1.48 0.92 39%
4 ANN (19-39-1) 1.10 0.92 3%
5 LSTM  (19-20-1).1b=6 3.26 0.90 5%
6 LSTM (19-20-1),Ib=6 2.33 0.95 45%
7 ANN (19-27-1) 1.40 0.91 6%
8 ANN (19-19-1) 0.90 0.95 13%
9 LSTM (19-20-1),1b=6 2.30 0.94 59%
10 LSTM (19-20-1),Ib=6 1.93 0.95 5%
11 ANN (19-28-1) 1.38 0.95 8%
12 LSTM (19-20-1),Ib=6 2.40 0.94 8%
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Results: Highest and lowest accuracy

Daily temperature

Task 1 Task 2

Highest accuracy

Station s8 s8

Model ANN ANN

Model Structure  (16-19-1)  (19-19-1)

RMSFE 0.85 0.90

R? 0.96 0.95

R2% inc. 1% 13%
Lowest accuracy

Station s5 s5

Model ANN LSTM

Model Structure  (16-33-1)  (19-20-1, 1b=6)

RMSFE 4.00 3.26

R? 0.84 0.90

R?% inc. 3% 5%

62.5°N

60.0°N

*2
57.5°N -
55.0°N -
*8 *5
*7
52.5°N -
2 %6
*3
50.0°N 0 -
1
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British Columbia, Canada
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Results: Highest and lowest accuracy

Daily temperature

Task 1
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Results: Highest and lowest accuracy

Daily temperature
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Highest accuracy
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Additional results
Downscaling precipitations

Target Observational records from ECCC dataset:
* Monthly precipitations

Input features Reanalysis dataset from NCEP/NCAR reanalysis:
« temperature + precip
» cloud forcing net longwave flux
» upward solar radiation fluxes
» downward solar radiation fluxes
e u-wind
* v-wind
* relative humidity
» Sea level pressure

Study area 12 stations across British Columbia, Canada

Learning algorithms ANN



Additional results
Downscaling precipitations

Monthly precipitations

Station ANN Task 1 ANN Task 2
Model structure RMSE  R? Model structure RMSE  R?

sl (144-17-1) 0.576 0.860 (147-17-1) 1.051 0.888
s2 (144-07-1) 1.299 0.827 (147-07-1) 0.456 0.581
s3 (144-17-1) 0.538 0.749 (147-17-1) 1.427 0.877
s4 (144-17-1) 0.199 0.856 (147-17-1) 1.664 0.916
s5 (144-17-1) 0.673 0.616 (147-17-1) 0.594 0.490
s6 (144-07-1) 0.625 0.619 (147-07-1) 0.397 0.752
s7 (144-17-1) 0.335 0.893 (147-17-1) 0.972 0.831
s8 (144-17-1) 0.160 0.807 (147-17-1) 1.163 0.775
s9 (144-07-1) 0.647 0.624 (147-07-1) 0.497 0.390
s10 (144-07-1) 0.896 0.649 (147-07-1) 0.651 0.701
sl1 (144-07-1) 0.299 0.888 (147-07-1) 1.046 0.869
s12 (144-07-1) 0.750 0.829 (144-07-1) 0.489 0.637
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Additional results

Downscaling precipitations

Monthly precipitations

Task 1 Task 2

Highest accuracy

Station s7 s4

Model Structure  (144-17-1) (147-17-1)
RMSE 0.335 1.664

R? 0.893 0.916

Lowest accuracy

Station s5 s9

Model Structure  (144-17-1)  (147-07-1)
RMSFE 0.673 0.497

R? 0.616 0.390
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Additional results

Downscaling precipitations

Monthly precipitations

Task 1 Task 2

Highest accuracy

Station s7 s4

Model Structure  (144-17-1)  (147-17-1)
RMSE 0.335 1.664

R? 0.893 0.916

Lowest accuracy

Station s5 s9

Model Structure  (144-17-1)  (147-07-1)
RMSE 0.673 0.497

R? 0.616 0.390
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Summary

New simple method for downscaling climate variables that learns from gridded
reanalysis data and local station data.

« Learns non-linear relationships and seasonal dependencies on given
grid nodes across time series

 Learns from non-uniform data fields

 (Can be used for new locations where no historical observational data is
available

« Can be applied to any region

« Can be used with different types of neural networks

Future work:

« Analysis of climate extremes and seasons analysis
* Conv-LSTM for radar data
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