Non-uniform spatial downscaling of climate variables

S. Mouatadid¹ S. Easterbrook¹ A. R. Erler²

¹Department of computer science, University of Toronto ²Department of Physics, University of Toronto

UNIVERSITY OF TORONTO

Outline

1. Climate downscaling

- 2. Recent work on statistical downscaling
- 3. Motivation and proposed downscaling framework
- 4. Model development
- 5. Experiment and results
- 6. Conclusion

From global climate models to local impact

Evacuating millions is not an 'effective or sustainable' response to hurricane threats.

CNBC, September 2017

September 2017: Hurricane IRMA, Dominican Republic Reuters, 2017

From left to right: Katia, Irma and Jose hurricanes

A challenge for regional climate studies

Gridded products

A replacement for pure observational data

Some existing gridded products:

- CaPA
- NRCan

Credit: Daly, 2016

Gridded products From GCMs...

• General circulation model (GCM):

A system of interacting mathematical model

- Not data-driven.
- Based on scientific first principles
 - Meteorology
 - Geophysics
 - Oceanography...
- Discretization into grid boxes.

Output: Projections + Reanalysis

Credit: A. Banerjee, C. Monteleoni, 2014

Gridded products ... To reanalysis datasets

GCMs are also used to obtain the gridded reanalysis products as a replacement for pure observational data.

Credit: EUJRC, 2017

Climate downscaling

Two major approaches:

• Dynamical downscaling

➔ physically consistent

- ➔ computationally expensive
- ➔ not fine-grained enough
- Statistical downscaling
 - ➔ relatively inexpensive
 - →challenging if insufficient historical data

Outline

1. Climate downscaling

2. Recent work on statistical downscaling

- 3. Motivation and proposed downscaling framework
- 4. Model development
- 5. Experiment and results
- 6. Conclusion

Recent work on CNNs for downscaling

(g) Bicubic reconstruction residuals

(h) SRCNN reconstruction residuals

(i) Residuals gain (SRCNN vs. Bicubic)

Fig. 4. Top row: Original and reconstructed SST fields. Middle row: Original and reconstructed gradient magnitudes. Bottom row: residuals between original and reconstructed SST fields (g and h), and residuals difference between bicubic and SRCNN reconstructed SST fields (i).

(Ducournau and Fablet, 2016)

Recent work on CNNs for downscaling

Figure 3: Layer by layer resolution enhancement from DeepSD using stacked SRCNNs. Top Row: Elevation, Bottow Row: Precipitation. Columns: 1.0° , $1/2^{\circ}$, $1/4^{\circ}$ and $1/8^{\circ}$ spatial resolutions.

(Vandal et al, 2017)

Recent work on CNNs for downscaling

Figure 7. Generated climate image samples from pixel recursive super resolution model. Red represents cloud fraction(clt), Green represents eastward near-surface wind(uas), Blue represents northward near-surface wind(vas). Cyclone center is distinguished as dark cyan cluster on right-side ground truth image. (Left : Low resolution input. Center : Generated climate image output. Right : Ground Truth input.)

(Kim et al, 2017)

Outline

- 1. Climate downscaling
- 2. Recent work on statistical downscaling
- 3. Motivation and proposed downscaling framework
- 4. Model development
- 5. Experiment and results
- 6. Conclusion

Proposed downscaling framework

Objective:

Statistical downscaling method that learns from gridded reanalysis data and local station data.

Used for: Task 1 : downscaling to locations *with* observational record,

Task 2: downscaling to locations *without* observational record;

Inputs Reanalysis datasets

Target Weather stations observational records

Models MLR, ANN, ELM, LSTM

Proposed downscaling framework

- Inputs Reanalysis datasets
- TargetWeather stations observational records
- Models MLR, ANN, ELM, LSTM

Outline

- 1. Climate downscaling
- 2. Recent work on statistical downscaling
- 3. Motivation and proposed downscaling framework

4. Model development

- 5. Experiment and results
- 6. Conclusion

Model development

Task 1: Downscaling to locations with observational record

Model development

Task 2: Downscaling to locations without observational record

Learning model 1/3 Artificial Neural Network

Learning model 2/3 Extreme Learning Machine

Learning model 3/3 Long Short-Term Memory

Input gate: scales input to cell (write) Output gate: scales output from cell (read) Forget gate: scales old cell value (reset)

(Graves, 2015)

Outline

- 1. Climate downscaling
- 2. Recent work on statistical downscaling
- 3. Motivation and proposed downscaling framework
- 4. Model development

5. Experiment and results

6. Conclusion

Experiment

Climate variables: daily air temperature Study area: British Columbia, Canada Data:

- Local observations (OBS): Environment and Climate Change Canada Network
- Global models (GCM): NCEP/NCAR reanalysis dataset

Learning algorithms: MLR, ANN, ELM, LSTM.

Results

Task 1: Downscaling to locations with observational record

Station	Task 1					
	Method	Model structure	RMSE	R^2	$R^2\%$ inc.	
1	ANN	(16-32-1)	1.92	0.91	2%	
2	ANN	(16-25-1)	2.59	0.94	1%	
3	LSTM	(16-20-1),lb=6	1.30	0.94	11%	
4	ANN	(16-27-1)	1.03	0.94	3%	
5	ANN	(16-33-1)	4.00	0.84	3%	
6	LSTM	(16-20-1),lb=6	2.13	0.96	4%	
7	ANN	(16-29-1)	1.30	0.92	2%	
8	ANN	(16-19-1)	0.85	0.96	1%	
9	LSTM	(16-20-1),lb=6	2.18	0.95	3%	
10	LSTM	(16-20-1),lb=6	1.98	0.95	4%	
11	ANN	(16-25-1)	1.34	0.95	1%	
12	LSTM	(16-20-1),lb=6	2.28	0.94	5%	

Results

Task 2: Downscaling to locations without observational record

Station	Task 2					
	Method	Model structure	RMSE	R^2	$R^2\%$ inc.	
1	ANN	(19-35-1)	1.83	0.92	18%	
2	ANN	(19-35-1)	2.68	0.93	15%	
3	LSTM	(19-20-1),lb=6	1.48	0.92	39%	
4	ANN	(19-39-1)	1.10	0.92	3%	
5	LSTM	(19-20-1),lb=6	3.26	0.90	5%	
6	LSTM	(19-20-1),lb=6	2.33	0.95	45%	
7	ANN	(19-27-1)	1.40	0.91	6%	
8	ANN	(19-19-1)	0.90	0.95	13%	
9	LSTM	(19-20-1),lb=6	2.30	0.94	59%	
10	LSTM	(19-20-1),lb=6	1.93	0.95	5%	
11	ANN	(19-28-1)	1.38	0.95	8%	
12	LSTM	(19-20-1),lb=6	2.40	0.94	8%	

Results: Highest and lowest accuracy

Daily temperature				
	Task 1	Task 2		
	Highest accuracy			
Station	s8	s8		
Model	ANN	ANN		
Model Structure	(16-19-1)	(19-19-1)		
RMSE	0.85	0.90		
R^2	0.96	0.95		
$R^2\%$ inc.	1%	13%		
	Lowest accuracy			
Station	s5	s5		
Model	ANN	LSTM		
Model Structure	(16-33-1)	(19-20-1, lb=6)		
RMSE	4.00	3.26		
R^2	0.84	0.90		
$R^2\%$ inc.	3%	5%		

British Columbia, Canada

Results: Highest and lowest accuracy

Daily temperature				
	Task 1	Task 2		
	Highest accuracy			
Station	s8	s8		
Model	ANN	ANN		
Model Structure	(16-19-1)	(19-19-1)		
RMSE	0.85	0.90		
R^2	0.96	0.95		
$R^2\%$ inc.	1%	13%		
	Lowest accuracy			
Station	s5	s5		
Model	ANN	LSTM		
Model Structure	(16-33-1)	(19-20-1, lb=6)		
RMSE	4.00	3.26		
R^2	0.84	0.90		
$R^2\%$ inc.	3%	5%		

British Columbia, Canada

Results: Highest and lowest accuracy

Daily temperature				
	Task 1	Task 2		
	Highest accuracy			
Station	s8	s8		
Model	ANN	ANN		
Model Structure	(16-19-1)	(19-19-1)		
RMSE	0.85	0.90		
R^2	0.96	0.95		
$R^2\%$ inc.	1%	13%		
	Lowest accuracy			
Station	s5	s5		
Model	ANN	LSTM		
Model Structure	(16-33-1)	(19-20-1, lb=6)		
RMSE	4.00	3.26		
R^2	0.84	0.90		
$R^2\%$ inc.	3%	5%		

British Columbia, Canada

Observational records from ECCC dataset:

Monthly precipitations

Input features

Target

- Reanalysis dataset from NCEP/NCAR reanalysis:
 - temperature + precip
 - cloud forcing net longwave flux
 - upward solar radiation fluxes
 - downward solar radiation fluxes
 - u-wind
 - v-wind
 - relative humidity
 - Sea level pressure

Study area 12 stations across British Columbia, Canada

Learning algorithms ANN

	Monthly precipitations					
Station	ANN Model structure	Tas RMSE	sk 1 R^2	ANN Model structure	Tas RMSE	sk 2 R ²
<u>s1</u>	(144-17-1)	0.576	0.860	(147-17-1)	1.051	0.888
s2	(144-07-1)	1.299	0.827	(147-07-1)	0.456	0.581
s3	(144-17-1)	0.538	0.749	(147-17-1)	1.427	0.877
s4	(144-17-1)	0.199	0.856	(147-17-1)	1.664	0.916
s5	(144-17-1)	0.673	0.616	(147-17-1)	0.594	0.490
s6	(144-07-1)	0.625	0.619	(147-07-1)	0.397	0.752
s7	(144-17-1)	0.335	0.893	(147-17-1)	0.972	0.831
s8	(144-17-1)	0.160	0.807	(147-17-1)	1.163	0.775
s9	(144-07-1)	0.647	0.624	(147-07-1)	0.497	0.390
s10	(144-07-1)	0.896	0.649	(147-07-1)	0.651	0.701
s11	(144-07-1)	0.299	0.888	(147-07-1)	1.046	0.869
s12	(144-07-1)	0.750	0.829	(144-07-1)	0.489	0.637

Monthly precipitations				
	Task 1	Task 2		
	Highest accuracy			
Station	s7	s4		
Model Structure	(144 - 17 - 1)	(147 - 17 - 1)		
RMSE	0.335	1.664		
R^2	0.893	0.916		
	Lowest accuracy			
Station	s5	s9		
Model Structure	(144 - 17 - 1)	(147-07-1)		
RMSE	0.673	0.497		
R^2	0.616	0.390		

British Columbia, Canada

Monthly precipitations				
	Task 1	Task 2		
	Highest accuracy			
Station	s7	s4		
Model Structure	(144 - 17 - 1)	(147 - 17 - 1)		
RMSE	0.335	1.664		
R^2	0.893	0.916		
	Lowest accuracy			
Station	s5	s9		
Model Structure	(144 - 17 - 1)	(147-07-1)		
RMSE	0.673	0.497		
R^2	0.616	0.390		

British Columbia, Canada

Outline

- 1. Climate downscaling
- 2. Recent work on statistical downscaling
- 3. Motivation and proposed downscaling framework
- 4. Model development
- 5. Experiment and results
- 6. Conclusion

Summary

New simple method for downscaling climate variables that learns from gridded reanalysis data and local station data.

- Learns non-linear relationships and seasonal dependencies on given grid nodes across time series
- Learns from non-uniform data fields
- Can be used for new locations where no historical observational data is available
- Can be applied to any region
- Can be used with different types of neural networks

Future work:

- Analysis of climate extremes and seasons analysis
- Conv-LSTM for radar data

Thanks!

Steve Easterbrook

Andre Erler

David Duveneau

Guido Vettoretti

Funding

