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Deep Neural Network

▪ Deep convolutional neural networks (CNNs) learn hierarchical feature 
representation of data
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Deep Learning enable science

Deep Learning enable Science!

Classify satellite images 

for carbon monitoring

Analyze recording 

of human brain

Analyze obituaries for 

Cancer-related discoveries
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Motivation

Numerical weather 

prediction is 

an ”Expensive” 

process!

• 256 million grid 

points

• Data-Driven 

Approach?GCM 

RCM

• Only way to analyze Peta 

scaled data in ESGF

• Let CNNs learn feature 

representation of extreme 

climate events in GCM 

outputs

• Ultimately save computing 

cost for Numerical Weather 

Predictions
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Method
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Method
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Data

▪ From JWTC historical hurricane report, 1979 ~ 2016, collected from Japanese 6 hourly reanalysis data
▪ 5 Channels:  cloud fraction, precipitation, surface level pressure, eastward wind, northward wind
▪ Resolution: 1.25 deg x 1.25 deg (138 km)  
▪ Size of collected grid : 20 longitude  by 20 latitude
▪ Size of dataset: 109,281
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Results
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True location

Predicted location

Poor Localization Accuracy
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Backgrounds: 
Auto-regressive Generative Models with Deep Learning 

▪ Goal of Generative Model: 
learn probability distribution of data 𝑝(𝑥) Generate (Synthetize) new data

▪ Auto-regressive Generative Model:
— choose an ordering of the dimensions in 𝑥
— define the conditionals in the product rule expression of 𝑝(𝑥)

▪ Properties:
— Pros: p(x) is tractable, so easy to train with maximum log likelihood, easy to sample 
— Cons: Very very slow, Hard to parallelize with GPU,  

doesn’t have a natural latent representation

𝑝 𝑥 = ෑ

𝑘=1

𝐷

𝑝(𝑥𝑘|𝑋<𝑘)

Model with neural nets!

𝑥0 𝑥1 𝑥2
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Backgrounds: 
PixelCNN

▪ Goal of Pixel CNN: 
learn probability distribution of images x, 𝑝(𝑥)
by conditioning previous pixels to predict each pixels
 Generate another image y: 𝑙𝑜𝑔𝑃 𝑦|𝑥 .

▪ Idea: use masked convolutions to enforce the autoregressive relationship 

Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu. "Pixel recurrent neural networks.” 

arXiv preprint arXiv:1601.06759 (2016).
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▪ Generating am Image x, pixel by pixel, channel by channel

— 𝑥 = 𝑥1, 𝑥2, 𝑥3 …𝑥𝑛^2

8bit

=256 

𝑥𝑖,𝑅 ∈ 𝑅256

𝑥𝑖,𝐵 ∈ 𝑅256
𝑥𝑖,𝐺 ∈ 𝑅256

Backgrounds: 
PixelCNN
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Method: 
Pixel-Recursive Super Resolution Model 

Dahl, Ryan, Mohammad Norouzi, and Jonathon Shlens. 

"Pixel recursive super resolution." arXiv preprint arXiv:1702.00783 (2017)

Low 

resolution 

image

Reconstructed

super 

resolution 

image

Ground truth

High resolution 

image

?
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Data

▪ Ground truth High resolution image (y)
— 3 Channels:  cloud fraction (Red), eastward wind (Green), northward wind (Blue)
— Convert variables to 256 integers (Unit8 format)
— Resolution: 1.25 deg x 1.25 deg (138 km)  

▪ Low resolution image (x)
— Upscale (x4) high resolution image with bi-cubic interpolation
— Resolution: 5 deg x 5 deg (552 km)
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Results
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Summary

▪ Design neural nets to detect extreme climate events
— Efficient than hand-crafted filter
— Save human effort

▪ Succeed to detect and localize tropical cyclone in GCM scaled low resolution 
reanalysis data 
— Potential to reduce expensive downscaling process   
— Save Computing cost 

▪ Reconstruct High Resolution Climate data using auto-regressive generative 
model
— Potential to improve localization accuracy
— Alternative with downscaling process
— Save Computing cost




