Resolution Reconstruction of Climate Data with Pixel Recursive Model for Identifying Extreme Climate Events

Soo Kyung Kim

Postdoc in ESGF group (William Dean) Lawrence Livermore National Laboratory Affiliated with Lawrence Berkeley National Laboratory Deep Learning for Climate Science (Mr. Prabhat) kim79@llnl.gov sookyungkim@lbl.gov

LLNL-PRES-705839

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Outline

Motivation

Detection and Localization of Extreme Climate Events

- Background: Convolutional Neural Networks (CNNs)
- Method
- Data
- Results

Resolution Reconstruction of Climate Data

- Backgrounds: Auto-regressive Generative Models
- **Method:** Pixel-recursive super resolution Model
- Data
- Results

Deep Neural Network

 Deep convolutional neural networks (CNNs) learn hierarchical feature representation of data

Deep Learning enable science

Deep Learning enable Science!

Motivation

- Only way to analyze Peta scaled data in ESGF
- Let CNNs learn feature representation of extreme climate events in GCM outputs
- Ultimately save computing cost for Numerical Weather Predictions

Method

Rübel, Oliver, et al. "Teca: A parallel toolkit for extreme climate analysis." Procedia Computer Science 9 (2012): 866-876.

Method

Data

- From JWTC historical hurricane report, 1979 ~ 2016, collected from Japanese 6 hourly reanalysis data
- 5 Channels: cloud fraction, precipitation, surface level pressure, eastward wind, northward wind
- Resolution: 1.25 deg x 1.25 deg (138 km)
- Size of collected grid : 20 longitude by 20 latitude
- Size of dataset: 109,281

Results

Poor Localization Accuracy

Outline

Motivation

Detection and Localization of Extreme Climate Events

- Background: Convolutional Neural Networks (CNNs)
- Method
- Data
- Results

Resolution Reconstruction of Climate Data

- Backgrounds: Auto-regressive Generative Models
- Method: Pixel-Recursive Super Resolution Model
- Data
- Results

Backgrounds:

Auto-regressive Generative Models with Deep Learning

- Goal of Generative Model: learn probability distribution of data $p(x) \rightarrow$ Generate (Synthetize) new data
- Auto-regressive Generative Model:
 - choose an ordering of the dimensions in x
 - define the conditionals in the product rule expression of p(x)

$$p(x) = \prod_{k=1}^{D} p(x_k | X_{< k})$$

Model with neural nets!

$$x_0$$
 x_1 x_2 x_2

- Properties:
 - Pros: p(x) is tractable, so easy to train with maximum log likelihood, easy to sample
 - Cons: Very very slow, Hard to parallelize with GPU,
 - doesn't have a natural latent representation

Backgrounds:

PixelCNN

Goal of Pixel CNN:

learn probability distribution of images x, p(x)by conditioning previous pixels to predict each pixels \rightarrow Generate another image y: logP(y|x).

Idea: use masked convolutions to enforce the autoregressive relationship

 $p(x_i \mid \mathbf{x}_{< i})$

Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu. "Pixel recurrent neural networks." arXiv preprint arXiv:1601.06759 (2016).

Backgrounds:

PixelCNN

Generating am Image x, pixel by pixel, channel by channel

Method:

Pixel-Recursive Super Resolution Model

Dahl, Ryan, Mohammad Norouzi, and Jonathon Shlens. "Pixel recursive super resolution." *arXiv preprint arXiv:1702.00783* (2017)

Data

- Ground truth High resolution image (y)
 - 3 Channels: cloud fraction (Red), eastward wind (Green), northward wind (Blue)
 - Convert variables to 256 integers (Unit8 format)
 - Resolution: 1.25 deg x 1.25 deg (138 km)
- Low resolution image (x)
 - Upscale (x4) high resolution image with bi-cubic interpolation
 - Resolution: 5 deg x 5 deg (552 km)

Results

Outline

Motivation

Detection and Localization of Extreme Climate Events

- Background: Convolutional Neural Networks (CNNs)
- Method
- Data
- Results

Resolution Reconstruction of Climate Data

- Backgrounds: Auto-regressive Generative Models
- Method: Pixel-Recursive Super Resolution Model
- Data
- Results

- Design neural nets to detect extreme climate events
 - Efficient than hand-crafted filter
 - Save human effort
- Succeed to detect and localize tropical cyclone in GCM scaled low resolution reanalysis data
 - Potential to reduce expensive downscaling process
 - Save Computing cost
- Reconstruct High Resolution Climate data using auto-regressive generative model
 - Potential to improve localization accuracy
 - Alternative with downscaling process
 - Save Computing cost

