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Deep Neural Network

= Deep convolutional neural networks (CNNs) learn hierarchical feature
representation of data
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Deep Learning enable science
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Deep Learning enable Science!
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Motivation

Numerical weather
prediction is
an "Expensive”
process!

»
L

. 256 milliongrid . ©Only way to analyze Peta
points scaled data in ESGF

- Data-Driven “» * Let CNNs learn feature

Approach? ™5 representation of extreme
climate events in GCM
outputs

Computer power

® Ultimately save computing
cost for Numerical Weather
Predictions
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Method

Comparison with prior approach

TECA from LBNL
(Toolkit for Extreme Climate Analysis)

Pattern Analysis of Climate Data
from Scientific Definition
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Hand-Crafted
Features( filter)

Requires high
resolution data
(~28km)

Incapability of
capturing latent
patterns of climate

events.
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Our Approach
attern Analysis of Extreme Climate Data

with Deep Learning
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Learned Features
(Filter) from data

- No need for prior
algorithmic
definition

Low resolution ~140 km
~>Detect using GCM

Capability to capture
latent climate patterns

->Scientific

Rubel, Oliver, et al. "Teca: A parallel toolkit for extreme climate analysis." Procedia Computer Science 9 (2012): 866-876.
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Method

Stage 1:
Detection Localization
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Data

= From JWTC historical hurricane report, 1979 ~ 2016, collected from Japanese 6 hourly reanalysis data
= 5 Channels: cloud fraction, precipitation, surface level pressure, eastward wind, northward wind

= Resolution: 1.25 deg x 1.25 deg (138 km)

= Size of collected grid : 20 longitude by 20 latitude

= Size of dataset: 109,281
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Results

Detection
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Poor Localization Accuracy

Predicted location
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Backgrounds:
Auto-regressive Generative Models with Deep Learning

= Goal of Generative Model:
learn probability distribution of data p(x) = Generate (Synthetize) new data

= Auto-regressive Generative Model:
— choose an ordering of the dimensions in x
— define the conditionals in the product rule expression of p(x)

D

pe) = | [pCalxa) )

k=1 Model with neural nets!

= Properties:
— Pros: p(x) is tractable, so easy to train with maximum log likelihood, easy to sample
— Cons: Very very slow, Hard to parallelize with GPU,
doesn’t have a natural latent representation
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Backgrounds:
PixelCNN

= Goal of Pixel CNN:
learn probability distribution of images x, p(x)

by conditioning previous pixels to predict each pixels
—> Generate another image y: logP(y|x).

= |dea: use masked convolutions to enforce the autoregressive relationship

T2

p(zi | X<i)
Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu. "Pixel recurrent neural networks.”
arXiv preprint arXiv:1601.06759 (2016).
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Backgrounds:
PixelCNN

= Generating am Image X, pixel by pixel, channel by channel

— X =X1,X2,X3 ...Xpnr2
2
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Method:

Pixel-Recursive Super Resolution Model

Pixel Recursive Super Resolution

prior network

¥ (PixelCNN)
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resolution super High resolution
image resolution image
image

Dahl, Ryan, Mohammad Norouzi, and Jonathon Shlens.
"Pixel recursive super resolution." arXiv preprint arXiv:1702.00783 (2017)
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Data

= Ground truth High resolution image (y)
— 3 Channels: cloud fraction (Red), eastward wind (Green), northward wind (Blue)

— Convert variables to 256 integers (Unit8 format)
— Resolution: 1.25 deg x 1.25 deg (138 km)

= Low resolution image (x)
— Upscale (x4) high resolution image with bi-cubic interpolation
— Resolution: 5 deg x 5 deg (552 km)
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Results

Low Resolution Image Super Resolution Image High Resolution Image
(Generated) (Ground Truth)
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Summary

= Design neural nets to detect extreme climate events
— Efficient than hand-crafted filter
— Save human effort

= Succeed to detect and localize tropical cyclone in GCM scaled low resolution

reanalysis data
— Potential to reduce expensive downscaling process
— Save Computing cost

= Reconstruct High Resolution Climate data using auto-regressive generative
model
— Potential to improve localization accuracy
— Alternative with downscaling process
— Save Computing cost
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