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Big Data in Earth System Science
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Age of Data Science

Deep Learning

“Black-box” models

learn patternsand
models solely from

data withoutrelyingon
scientificknowledge

* Hugely successful in commercial applications:
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Promise of Data Science in Transforming
Scientific Discovery

Science:

3 (TS
transforming
science

oew window ca the

Researchers are unieashing

artificial intelligence (Al) on s L S

PETABYTEERA gy

torrents of big data

nature

“Unlike earlier attempts ...
[Al systems] can see patterns
and spot anomalies in data
sets far larger and messier
than human beings can cope
with.”

July 7 2017 Issue




Promise of Data Science in Transforming
Scientific Discovery

The End
of Science -

Will the rapidly growing area of
“black-box” data science models
make existing theory-based models
obsolete?
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Limits of “Black-box” Data Science Methods
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The Opinion Pages  or-£p cONTRIBUTORS

Geophysical Research Letters : . ! .
.p iatig . e : Eight (No, Nine!) Problems With Big Data
Statistical significance of climate sensitivity predictors s @ surcts saaeavest oavis s s, 20u

obtained by data mining " ...you will always need to start with an analysis that relies on
an understanding of physics and biochemistry."”



Why Do Black-box Methods Fail? (1/2)

e Scientific problems are often under-constrained

— Complex, dynamic, and non-stationary relationships
— Large number of variables, small number of samples

e Standard methods for evaluating ML models (e.g.,
cross-validation) break down

— Easy to learn spurious relationships that look deceptively
good on training and test sets

— But lead to poor generalization outside the available data

Huge number of samples is critical to success of methods such as deep learning



Why Do Black-box Methods Fail? (2/2)

* Interpretability isan important end-goal (esp. in scientific
problems)

Can we open the black box of Al?  [8¥1181(®

Artificial intelligence is everywhere. But before scientists trust it, they first need to
understand how machines learn. - Castelvecchi 2016

* Need to explain or discover mechanisms of underlying
processes to ...

— Form a basis for scientificadvancements
— Safeguard against the learning of non-generalizable patterns

11/29/17 9



Theory-based vs. Data Science Models
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Theory-based vs. Data Science Models
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Theory-guided Data Science:
Emerging Applications

e Earth Science:

— Karpatne et al., “Physics-guided Neural Networks:

Application in Lake Temperature Modeling,” SDM
2018 (in review).

— Faghmous et al., “Theory-guided data science for
climate change,” IEEE Computer, 2014.

— Faghmous and Kumar, “A big data guide to

understanding climate change: The case for
theory-guided data science,” Bigdata, 2014.

* Fluid Dynamics:

— Singh et al., “Machine learning- augmented
predictive modeling of turbulent separated flows
over airfoils,” arXiv, 2016.

PHYSICS INFORMED NACHINE LEARNING

Symposium by Los Alamos National Laboratory, 2016,2018

Workshop on Deep Learning
for Physical Sciences 2017

|IBM Research

e MaterialScience:

— Curtarolo et al., “The high-throughput highway
to computational materials design,” Nature
Materials, 2013.

 Computational Chemistry:

— Lietal., “Understanding machine-learned
density functionals,” International Journal of
Quantum Chemistry, 2015.

* Neuroscience, Biomedicine,
Particle Physics,

A
Al for SC|ent|fic Progress,
2016

“Physical Analytics” Research Division



An Overarching Objective of TGDS
Learning Physically Consistent Models

* Traditionally, “simpler” models are preferred for generalizability
— Basis of several statistical principles such as bias-variance trade-off

UM M, M ‘M1 (less complex model):
? High bias—Low variance
‘M3 (more complex model):
Low bias—High variance
% Truth

Generalization Performance oc Accuracy + Simplicity



An Overarching Objective of TGDS
Learning Physically Consistent Models

/ Physically Inconsistent
Physically Inconsistent N <« Models

Models  ~-._./ <k Truth

* Inscientificproblems, “physical consistency” can be used as another measure
of generalizability

— Canhelpin pruninglarge spaces of inconsistentsolutions
— Resultin generalizable and physically meaningful results

Generalization Performance oc Accuracy + Simplicity + Consistency



Physics-Guided Neural Networks (PGNN)

A Framework for Learning Physically Consistent Deep Learning Models

Scientific Knowledge (Physics)

Used to guide selection of model architecture,
activation functions, loss functions, ...

Karpatne et al., “Physics-guided neural networks (PGNN):

Application in Lake Temperature Modeling,” SDM 2018 (in review; arXiv: 1710.11431).
15



Case Study: Lake Temperature Modeling

§
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> USGS @ Center for Limnology

science for a changing world U n iverSity Of WiSCOﬂSi n_Mad iSOn

Input Drivers: Target Output:
Short-wave Radiation, Temp. of water at every depth
Long-wave Radiation, : ,

Air Temperature, > | Temp .~

Relative Humidity, ~—

Wind Speed, \\_/

Rain, ...

Physics-based Approach: General Lake Model (GLM)!

— Captures physical processes

responsible for energy balance RMSE of Uncalibrated Model: 2.57
— Requires lake-specific calibration RMSE of Calibrated Model: 1.26
using large amounts of data and (for Lake Mille Lacs in Minnesota)

computational resources

lHipsey et al., 2014



PGNN 1:
Use GLM Output as Input in Neural Network

 Deep Learning can augment physics-based models by modelingtheirerrors

 Part of a broaderresearchtheme on creating hybrid-physics-data models

Input Drivers
+

Output of GLM
(Uncalibrated)

input layer

hidden layer 1 hidden layer N

Loss Function = TrainingLloss (Y,Y) + A, [[W|ly + A5 W],

17



PGNN 2:
Use Physics-based Loss Functions

 Temp estimates need to be consistentwith physical relationships
b/w temp, density, and depth

1000 r

Physical Constraint:
Denser water is at higher depth

999

998

Depth

Aj=p;i—pi+120

997 r

Density (in kg/m?)

If depthd; > depthd;;4

M0 5 0 4 10 15 20 25 30
Temperature (in °C)

Convert ¥ to density estimate p Physics-based Loss = Sum of Physical Violations
= ¥, ReLU(A))

Density

Loss Function = Tr. Loss (Y, Y’) + A4 IWIll1+ A, IW]l, + Apgy Physics-based Loss

Does not require labels!



Physical Consistency Ensures Generalizability

GLM

Black-box Neural
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Future Prospects: Theory-guided Data Science

1. Theory-guided Learning

. Choice of Loss Function

. Constrained Optimization
Methods

. Probabilistic Models

[Limnology, Chemistry, Biomedicine,
Climate, Genomics]

2. Theory-guided Design

. Choice of Response/Loss
Functions

. Design of Model Architecture

[Turbulence Modeling, Neuroscience]

3.

Theory-guided Refinement

Post-processing
Pruning

[Remote Sensing, Material Science]

Creating Hybrid Models of
Theory and Data Science

Residual Modeling
Predicting Intermediate Quantities

[Hydrology, Turbulence Modeling]

Augmenting Theory-based
Models using Data

Calibrating Model Parameters
Data Assimilation

[Hydrology, Climate Science, Fluid Dynamics]



Future Prospects:

Hybrid-Physics-Data Models

Xt
Numerical Models in PHY l
Earth System Sciences 2
t
yt — Fe(xtrzt)
Ziyq = Ge(xt;zt) F, G’f
Yt

Physics-based Models

Contain knowledge

X: Input gaps in describing
y: output certain processes
Z: state

0: parameters
F, G: Physics-based PDEs



Future Prospects:

Hybrid-Physics-Data Models

l RNN

LSTM Gates,
Attention, ...

C. memory cells

Yt

Data Science Models

Require large number

X: Input of representative
;’.- ;:'ECF;U" samples

0: parameters
F, G: Physics-based PDEs



Future Prospects:

Hybrid-Physics-Data Models

Xt
PHY i ¢ RNN
Zt
LSTM Gates,
F,G,0 Attention, ...
Multiple ways of
combiningoutputs
e Residual Modeling YVt
* Mixture Modeling Hybrid-Physics-Data Models

* Density Ratio Modeling
Overcome complementary

weaknesses of both PHY and RNN



Concluding Remarks

“Black-box” deep learning methods not sufficientfor knowledge
discoveryin scientific domains

Physics can be combined with deep learningin a variety of ways
under the paradigm of “theory-guided data science”

Use of physical knowledge ensures physical consistency as well as
generalizability

Theory-guided data science is already starting to gain attentionin
several disciplines:

— Climate science and hydrology
— Turbulence modeling

— Bio-medical science

— Bio-marker discovery

— Material discovery

— Computational chemistry, ...
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