Hydrologic controls on Amazonia carbon balance (results from the LPJ-DGVM)

intigated and non-imigated cropland

Ben Poulter, Fanny Langerwisch, Ursula Heyder, Wolfgang Cramer and Wolfgang Lucht

Potsdam Institute for Climate Impact Research, Germany

LPJ-DGVM framework

■ Sitch et al. 2003 Coupled biogeography-biogeochemistry model Simulates first order processes at daily time interval Carbon allocation and vegetation dynamics

simulated at annual time

interval

LPJ Photosynthesis

- Farquhar photosynthesis model modified for global modeling purposes
 - Assumes leaf N-content varies seasonally and with canopy position to maximize net assimilation
 - C3 / C4 biochemical pathways modeled differently
- Inputs
 - Calculated at a daily time scale
 - CO2, temperature, soil moisture, PAR, daylength
- Soil moisture limits conductance under waterstressed conditions (W)
 - *W* = Supply / Demand

LPJ Soil Respiration

- Three SOM pools with specific turnover time (`at 10° C)
 - Litter (3.86 yrs)
 - Intermediate (33.3 yrs)
 - Slow (1000 years) soil carbon pools
- Respiration is soil temperature (T) and moisture (W) dependent
 - Soil temperature follows a modified Arrhenius relationship g(T)
 - 70% of decomposed litter enters atmosphere
 - ~28% of decomposed litter enters intermediate pool
 - ~2% of decomposed litter enters slow pool

$$k = \frac{(1/\tau_{10})g(T)f(W_1)}{12}$$

LPJ-Modeling Protocol for LBA-MIP

• Inputs

- Daily mean temperature
- Total daily incoming shortwave radiation
 - Converted to PAR and PET
- Total daily precipitation
- Soil type
- Annual CO₂ from Mauna Loa

Protocol

- 1000 year spin-up repeating site data
- Fire disturbance module turned off
- Fixed vegetation for pasture (no trees)
- Dynamic vegetation for savannah and wet forests
 - No fixed LAI, ecosystem type etc...

LBA Net Ecosystem Exchange

Santarem KM67

Santarem KM67 c-dynamics

Date

Santarem KM67 c-dynamics

Date

Santarem KM67 response curves

Photosynthesis co-varies with soil moisture and PAR

Santarem KM67 response curves

 Soil respiration determined by soil moisture

Santarem KM67 response curves

NEE primarily limited by soil moisture and its effects on soil respiration

Low soil moisture – combined effect of low NPP & low RH

- Moderate soil moisture high NPP dominates NEE
- High soil moisture high RH dominates NEE

Summary from LPJ

Length of dry period determines c source-sink status

- Short dry period
 - Reduced soil respiration, c-sink
- Long dry period
 - Reduced LAI, lower NPP, c-source

Feedbacks include

- Lower productivity in drier climate & effects on soil processes
 - Litter carbon in wet forest 17-19 Mg C ha⁻¹
 - Litter carbon in savannah 14-17 Mg C ha⁻¹
- Consumption by more frequent fire in drier climate