MODELLING THE CARBON BALANCE OF AMAZONIAN **RAINFORESTS: RESOLVING** ECOLOGICAL CONTROLS ON NET ECOSYSTEM PRODUCTIVITY

R. F. Grant¹, L. R. Hutyra^{2,6}, R.C. de Oliveira³, J. W. Munger^{2,4}, S. R. Saleska⁵ and S. C. Wofsy^{2,4}

¹ Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada T6G 2E3

² Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA,

³ EMBRAPA Amazônia Oriental, Belem PA CEP 66620-270 BRAZIL.

⁴ School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA

⁵ Department of Ecology and Evolutionary Biology, University of Arizona, Tuscon, AZ, USA

⁶ Now at Department of Urban Design and Planning, University of Washington, Seattle, WA, USA.

Introduction: Net CO₂ exchange of mature Amazonian rainforests is highly seasonal Net sources during the rainy season ■ Less CO₂ uptake with less radiation? ■ More CO₂ emission from wetter soil? Net sinks during the dry season ■ More CO₂ uptake with more radiation, sustained by water deep in the soil profile accessed by deep roots? Less CO₂ emission from drier soil?

Test seasonal effects on net CO_2 exchange in ecosys vs. EC measurements at Santarém km

Model Experiment

- physical and chemical properties of nutrient poor clay oxisol (Silver et al., 2000)
- biological properties of overstory and understory plant populations (broadleaf evergreens)
- plant populations seeded during model year 1890
- model run to 2010 under repeating cycles of hourly weather data recorded km 67 EC flux tower during 2002 – 2004.
- background mortality rate of 2% per year, raised to 5% per year every 5th year
- herbivory through daily removals of standing leaf mass to give annual removals of 10%
- \Box C_a rose hourly from 275 to 385 µmol mol⁻¹.
- NH_4^+ -N, NO_3^- -N and $H_2PO_4^-$ -P in precipitation was 0.1, 0.05 and 0.01 g m⁻³

Model Test: How well were measured CO₂ and LE fluxes simulated?

Year	n	а	b	R ²	RMSD
		CO ₂	(µmol	m ⁻² s ⁻¹)	
2003	4744	0.89	0.91	0.80	5.1
2004	3998	0.86	1.04	0.73	5.8
		LE	(W m ⁻²)		
2003	5043	-30	0.90	0.79	63
2004	4642	-29	0.92	0.73	72

Seasonal patterns of rainfall, ET and SWC during 2003

Seasonal patterns of surface drying and NEP in 2003 Surface drying reduces soil respiration, raises NEP 100 face litter m 10 -*ψ* (MPa) .05 m 0.30 m 0.1 0.01 1E-3 Soil Respiration -4 -5 (g C m⁻² (-6 -8 <u>م</u>_ C m⁻⁷ NEP 0 -2 -3 360 30 270 0 60 90 120 150 180 240 300 330 210Day of Year 2003

Seasonal patterns of rainfall, ET and SWC during 2004

Seasonal patterns of surface drying and NEP in 2004

During the 2003 dry season, CO₂ influxes rose but CO₂ effluxes did not

During the 2004 dry season, CO_2 influxes did not rise, while CO_2 effluxes declined

C Balances modelled by ecosys and estimated by EC and biometric

measurements at SR67 in 2003 and 2004

	2003		2004		
	Μ	EC & B [†]	Μ	EC & B	Other*
GPP	3720	3171	3862	3195	3000
Ra: above	1201		1372		1550
Ra: below	1333		1303		550
NPP above	516		849		640
NPP below	670		338		260
Rh	1224		1074		850
Reco	3758	3262	3749	3173	2950
DIC,DOC	8		13		
NEP	-46	-91 ± 49	+100	+22 ± 45	+50

[†] from Hutyra et al., 2008; * for central Amazonian forests from Chambers et al. (2004b)

Can we simulate long-term forest NEP from this model?

What causes net CO₂ exchange of mature Amazonian rainforests to be highly seasonal?

Net sources during the rainy season ■ Less CO₂ uptake with less radiation ■ More CO₂ emission from wetter soil Net sinks during the dry season ■ More CO₂ uptake with more radiation, sustained by water deep in the soil profile accessed by deep roots ■ Less CO₂ emission from drier soil