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Abstract

Dismal performance often results when the memory re-
quirements of a process exceed the physical memory avail-
able to it. Moreover, significant throughput reduction is ex-
perienced when this process is part of a synchronous par-
allel job on a non-dedicated computational cluster. A pos-
sible solution is to develop programs that can dynamically
adapt their memory usage according to the current avail-
ability of physical memory. We explore this idea on sci-
entific computations that perform repetitive data accesses.
Part of the program’s data set is cached in resident mem-
ory, while the remainder that cannot fit is accessed in an
“out-of-core” fashion from disk. The replacement policy
can be user defined. This allows for a graceful degrada-
tion of performance as memory becomes scarce. To dynam-
ically adjust its memory usage, the program must reliably
answer whether there is a memory shortage or surplus in
the system. Because operating systems typically export lim-
ited memory information, we develop a parameter-free al-
gorithm that uses no system information beyond the resident
set size (RSS) of the program. Our resulting library can be
called by scientific codes with little change to their struc-
ture or with no change at all, if computations are already
“blocked” for reasons of locality.

Experimental results with both sequential and parallel
versions of a memory-adaptive conjugate-gradient linear
system solver show substantial performance gains over the
original version that relies on the virtual memory system.
Furthermore, multiple instances of the adaptive code can
coexist on the same node with little interference with one
another.

�Work supported by the National Science Foundation (ITR/ACS-
0082094 and ITR/AP-0112727), a DOE Computational Science Graduate
Fellowship, and the College of William and Mary.

1 Introduction

Powerful, yet cost efficient, clusters of workstations
(COWs) bear the brunt of the scientific computing work-
load at many institutions. These can be dedicated, space-
shared COWs, or, quite often, networks of desktops used as
a shared computational resource for parallel and sequential
jobs. Besides increased computational power, these envi-
ronments also address the ever increasing memory demands
of scientific applications. However, COWs are often shared
by one or more research groups, and networks of worksta-
tions by the pool of local users. In periods of high demand,
(approaching deadlines, end of semester, etc.) time sharing
the limited memory resources on these environments can
have particularly adverse effects on the effectiveness of the
system.

An example of such adverse effects is our experience
with running a large, parallel multigrid code to compute a
three-dimensional potential field on four SMPs that our de-
partment maintains to support computationally demanding
jobs. Our code required 860MB per processor. Because
each SMP node had 1GB available, we used only one pro-
cessor per node. Other users were running smaller jobs at
the same time without interference. However, when a user
attempted to use Matlab to compute the QR decomposition
of a large matrix on one of the processors, the time for
one iteration of our code jumped from 14 seconds to 472
seconds! Such thrashing is a familiar scenario to many re-
searchers that rely on similar shared environments.

In the presence of memory pressure on a node, the lo-
cal operating system usually chooses one of the following
two strategies. It may swap out some of the competing pro-
cesses to enable the remaining processes to fully utilize the
resources and finish earlier, thus improving the throughput
of the node. However, if the swapped out process happens
to be part of a parallel job that requires frequent synchro-
nizations, the job experiences extreme increase in response
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time. Alternatively, the system may choose to time share
all jobs, leading to thrashing, low CPU utilization, high re-
sponse time for all jobs and thus low throughput. The prob-
lem is equally severe on SMPs where memory pressure may
not coincide necessarily with additional CPU load, and even
for sequential jobs on time shared compute servers.

A typical solution to these problems is not to multi-
program the computational nodes but to enforce admission
control, usually through some centrally administered batch
queue [14, 8, 9]. This solution, adopted in most super-
computing centers, assumes full availability of resources
(including CPUs and memory) for a job to commence ex-
ecution. The most common problem of these schedulers
is that jobs may suffer high slowdown compared to stand-
alone parallel execution, due to long waiting times in the
queues. It may also be problematic in systems that use
SMPs: Although the processors of an SMP can be parti-
tioned between jobs, each job has access to the entire phys-
ical memory available on the machine. In fact, many users
prefer to send their jobs to large-scale SMPs, such as the
NCSA Origin2000 [5], precisely for their ability to over-
subscribe memory, i.e. use more memory than the memory-
per-CPU share of the CPUs on which their jobs are running.
This may force the admission control scheme to allocate
processors with unit equal to the size of an SMP, or limit
the amount of memory given to each job to a small fraction
of the memory available on the SMP.

Migrating processes to unloaded nodes may provide a
solution to memory pressure in COWs but it does not work
within SMPs, as the shared memory is equally accessible
regardless of the processor of execution. Migration of par-
allel jobs in clusters and distributed systems is difficult in
theory and in practice. It incurs high overhead (typically on
the order of minutes, even for programs with small problem
sizes) and its effectiveness depends on the granularity, exe-
cution time, and communication patterns of the application,
of which the system has limited or no knowledge [18].

In this paper, we propose a general framework for
application-level dynamic memory adaptation in a certain
class of applications with repetitive access patterns. Using
this framework, an application can run very efficiently in-
core when enough memory is available, and, when memory
becomes scarce, can gracefully degrade its performance by
shifting some of its work out-of-core in a controlled way.
Available main memory is used as cache, while uncached
pages are explicitly brought to and from the disk. Be-
cause the application has exact knowledge of the access pat-
tern, optimal caching and prefetching policies can be used,
vastly improving on what the virtual memory system can
do. Throughout the paper we maintain the generality of our
approach, but we draw our examples from scientific com-
puting, where repetitive access of large amounts of data is
typical.

In section 2, we summarize other related work in the
context of the problem we study. In section 3, we pro-
vide a framework for minimally modifying applications to
add memory adaptivity and we discuss some implementa-
tion details. In section 4, we develop a parameter-free al-
gorithm that dynamically ascertains the amount of available
memory at any point of execution using only runtime mea-
surements of the resident set size. Using this algorithm, our
supporting library enables a graceful degradation of perfor-
mance as memory becomes scarce. In section 5, we mod-
ify a Conjugate Gradient linear system solver for memory
adaptation and we provide timings that show the benefits
of our method. We conclude with some discussion on the
future directions of our approach.

2 Related work

Chang et.al. [4], have presented a user-level mechanism
for constraining the resident set sizes of user programs
within a fixed range of available memory. This mechanism
assumes that the program knows a-priori the lower and up-
per limit of the band of available memory on which it can
run, and customizes its resident set accordingly at startup.
This work does not consider dynamic changes to the mem-
ory available to a program at runtime (either increases or
decreases), nor does it address the problem of customizing
the memory allocation and replacement policy to the mem-
ory access pattern of the application.

Application-specific algorithms for physical memory
management [7], and caching, prefetching and disk
scheduling [3] have been proposed to remedy the problems
of generic operating system policies for memory manage-
ment, such as approximations of LRU replacement. These
algorithms have been proposed for stand-alone applica-
tions with specific access patterns, rather than for multipro-
grammed systems. Furthermore, they generally assume a
fixed amount of physical memory that is available to a pro-
gram at runtime. Out-of-core methods for sequential and
parallel numerical programs [6, 15, 19, 17] assume that the
program runs in a fixed memory space which is not enough
to cache the working set of a program throughout execu-
tion, and use restructuring optimizations to minimize I/O
latency and improve disk utilization. These methods do not
react to variations in the memory available to the program
at runtime.

Brown and Mowry [2] developed an approach in which
a compiler inserts hints where it believes that pages should
be prefetched or released. A run-time layer follows the
hints when it deems them appropriate to current system con-
ditions. The approach has shown some good results, al-
though applications with complex memory-access patterns
can cause significant difficulties in identifying appropriate
release points.
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Barve and Vitter [1] presented a theoretical framework
for estimating the optimal performance that algorithms
could achieve if they adapted to varying amounts of avail-
able memory. However, they did not discuss how such
adaptivity could be implemented. Pang et.al. [13] presented
an adaptive version of a sorting algorithm, which dynam-
ically splits and merges the size of the resident buffer to
adapt to changes in the memory available to the sort by
the database management system (DBMS). This study was
conducted with a simulator and no implementation details
of the adaptation interface between the algorithm and the
DBMS were discussed.

In [12], one of the authors presented an adaptive schedul-
ing scheme for alleviating memory pressure on multipro-
grammed COWs, while co-ordinating the scheduling of the
communicating threads of parallel jobs. That scheme re-
quired modifications to the operating system. In [11], the
same author suggested the use of dynamic memory map-
ping for controlling the resident set size of a program, so
that it stays within a band of available physical memory
at any point of execution. The proposed mechanism was
application-independent and used generic, but suboptimal
algorithms for eviction of memory blocks. The algorithm
operated at page-level granularity. However, better opti-
mizations are possible with application-defined units of data
transfer.

In [10], two of the authors followed an application-level
approach for memory balancing. The idea was to avoid
thrashing during the most computationally intensive phase
of an iterative eigenvalue solver, the so-called correction
phase. If the program detected memory pressure on a node,
it receded its correction phase from that node, hopefully
speeding the completion of competing jobs. A load bal-
ancing scheme guaranteed that other nodes would pick up
the correction work of the receded process. Outside the cor-
rection phase the code executed with memory pressure but
for a very short period of time.

3 A portable framework for memory adap-
tivity

Many scientific applications, such as sparse iterative
methods, dense matrix methods, and Monte Carlo tech-
niques, use blocked algorithms to exploit memory hierar-
chies. Applications with data sets that do not fit in the
DRAM available in a workstation typically use out-of-
core algorithms, which are also blocked to effectively use
DRAM as a cache for disk data. For out-of-core methods,
the blocks are often referred to as panels to distinguish from
disk blocks. Blocked algorithms have a common process-
ing pattern. Normally, data is partitioned into � panels and
the algorithm operates on them in a loop as shown below:

for i = 1:�
Get panel �� from lower level of the

memory hierarchy.
Work on ��.
Write results back and evict �� to the

lower level of the memory hierarchy.
end

On a dedicated workstation with a fixed amount of
DRAM on board, one can easily select between an in-core
or an out-of-core algorithm, according to the size of the
problem that needs to be solved. On a non-dedicated sys-
tem though, the choice between in-core and out-of-core al-
gorithms is not obvious. Multiple applications may contend
for physical memory. If the amount of DRAM available to
a specific application fluctuates at runtime, the data set of
the application may or may not fit in memory at different
points of execution. It is desirable to use an adaptive algo-
rithm, which dynamically adjusts the resident set size of the
application based on memory availability.

In theory, virtual memory mechanisms can transparently
adjust the resident sets of applications according to memory
load. The operating system pages in non-memory-resident
data on demand, and reclaims pages from programs when it
detects memory shortage. Virtual memory is entirely trans-
parent to the application, but has several shortcomings. The
most important is that the page replacement algorithms used
by the virtual memory system do not necessarily match the
data access patterns and the memory demands of applica-
tions. As a consequence, the operating system often pages
out data when they are actually needed by the application.
In the worst case, poor replacement decisions have a cas-
cading effect and lead to thrashing. Eventually, the system
spends more time paging data than executing useful com-
putations.

Adaptation to memory load can be achieved by switch-
ing dynamically from an in-core to an out-of-core version
of the algorithm, whenever the application detects memory
pressure. This solution is attractive from many points of
view. Optimized out-of-core algorithms are readily avail-
able for many applications. In an out-of-core algorithm,
controlling the size of the resident set can be done naturally
by controlling the number and the size of panels kept in
core. Out-of-core algorithms optimize the data transfers by
taking advantage of the physical placement of panels on the
disk and exploit filesystem optimizations such as prefetch-
ing and data aggregation to minimize latency and maximize
disk throughput.

Nevertheless, several additional mechanisms need to be
introduced in out-of-core algorithms to make them work in
an adaptive manner. The out-of-core algorithm should run
as fast as an in-core algorithm if the program has enough
memory to cache its entire data set. Besides that, the algo-
rithm needs a mechanism to detect if the operating system
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changes the amount of physical memory that the program
can use at runtime. The algorithm must react to both mem-
ory shortage and memory availability. At the application
level, this is a non-trivial task, since most operating systems
reveal little information on available physical memory.

In this section we provide a framework for memory
adaptivity which is portable to many block-structured ap-
plications and operating systems. In the following sections
we provide algorithms for realizing this memory adaptivity
and we confirm their optimal performance given a certain
amount of memory.

A key element of our implementation is the manage-
ment of panels with memory mapped I/O. This is a highly
portable mechanism, available in all modern desktop and
server operating systems. Memory-mapped I/O unifies
computation and I/O and simplifies the code to a great ex-
tent. With it, we can derive an adaptive implementation of
an algorithm which is identical to an in-core version, with
one minimal extension to adjust the number of panels kept
in-core, whenever a new panel is fetched. Additionally, us-
ing named mappings to files has some striking advantages
under memory pressure: Clean pages from a named mem-
ory mapping can be evicted by the virtual memory system
without being written to the swap device. Finally, via the
madvise() call we can provide hints to the operating sys-
tem about how a mapped region of memory will be used.

We control the number of panels that the application
keeps in-core, whenever the algorithm attempts to bring in a
new panel to work on. At this point, the algorithm has three
choices: it can increase the number of in-core panels if ad-
ditional memory is available; it can decrease the number of
in-core panels if less memory is available; or it can sustain
the number of in-core panels if no change in memory avail-
ability is detected.

The policy for selecting panels to evict and panels to
bring in is application-specific. Given full knowledge of
the data access pattern, the application can use the optimal
policy for panel replacement. For instance, the test pro-
grams in this paper have repetitive, sequential access pat-
terns, so MRU is the optimal policy, whereas the LRU ap-
proximations used in most virtual memory systems would
completely fail.

The next section describes machine-independent algo-
rithms to detect memory shortage or availability from
within the applications, using solely local information.
Coupled with memory mapped I/O, these algorithms inject
adaptivity to memory shortage and availability with mini-
mal implementation cost and maximum portability.

4 Adapting to memory availability

Having addressed how the library decides on the total
number of panels and on their replacement policy, the main

question is that of memory adaptivity. We would like to be
able to reduce the number of panels when memory shortage
is detected but still cache as many panels as possible. More-
over, when memory becomes available we should be able to
utilize it promptly by mapping more panels.

Detecting memory shortage is relatively straightforward.
During execution, a decrease in the program’s resident set
size (RSS), without any program unmapping action, is an
indication of memory pressure. Detecting the level of pres-
sure can be determined by the disparity between RSS and
the amount of memory the program thinks it should have.

Detecting memory availability is more involved. Ide-
ally, the system would provide an estimate of the amount of
available memory, and the program would use this to deter-
mine the number of additional panels to map. Unlike RSS,
however, this is global system information and most oper-
ating systems do not provide it accurately. The amount of
free memory that is reported by many systems can be a huge
underestimate of the amount of memory actually available.
For instance, in many systems, the amount of free memory
is usually close to zero, because any memory not associ-
ated with running processes is used by the file cache. In this
case, the system might still service a large memory request
from a program by reducing the size of the file cache. Thus,
the most reliable way to determine if a quantity of memory
is available is to use it and see if it can be maintained in
RSS.

We emphasize that memory shortage and availability are
concepts that are local to the program. For example, high
system CPU utilization may still mean memory shortage if
our program is swapped out, and memory availability may
be the result of memory pressure on other processes.

4.1 Detecting memory shortage

Consider an application that is memory managed by our
library. We denote by Panels in the number of panels that
are cached in memory. Because the application has knowl-
edge of the rest of its memory requirements, it can compute
what its current RSS should be. We call this desired RSS
and denote as dRSS:

dRSS = (Other Program Memory) +
Panels in * Panel size.

By definition, the application is under (additional) memory
pressure when it cannot maintain this desired RSS. If the
application detects a decrease in RSS, a number of cached
panels should be unmapped so that the new desired RSS
reflects the reduced RSS. However, the panels to be un-
mapped may not coincide with the memory paged out by
the system (the cause of RSS reduction), so the following
straightforward scheme

if ( RSS � dRSS ) then
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diff = (dRSS-RSS) / Panel size
unmap diff panels
Panels in = Panels in � diff
dRSS = dRSS � diff * Panel size

may lead to a cascade of unmappings until Panels in = 1.
Consider an example where the program’s data set is broken
into five panels, all of which are currently mapped (Pan-
els in = 5). A memory shortage has caused the system to
evict portions of panels 1 and 2 from memory, but there is
enough memory available to keep four panels mapped (diff
= 1). When the program accesses panel 4, the condition
(RSS � dRSS) holds, so Panels in is decreased to 4 by re-
placing the MRU panel 3. However, panel 3 was fully res-
ident, so its unmapping causes RSS to reduce even further
by exactly Panel size. This is the same amount the dRSS
is reduced, so when the program tries to access panel 5, the
condition (RSS� dRSS) still holds — despite the availabil-
ity of memory. The above process repeats until all but one
panels are unmapped.

This cascade of unnecessary unmappings of cached pan-
els reduces the performance of the code significantly. To
avoid this problem, we introduce lastRSS, a variable that
tracks the value that RSS had immediately before the ac-
cess of the last panel. If memory pressure increased during
that panel access, then additional panels may have to be un-
mapped in the following iteration. We initialize lastRSS to
dRSS and we update it by executing the first five lines and
the last line of the algorithm in figure (1) before accessing
each new panel. We assume that within the execution of
the if-statement no additional page out activity occurs, so
that RSS can be reduced only by the unmap call. This is
because the number of page faults that can occur in the sys-
tem during the execution of three statements is limited and
far smaller than the panel size. Finally, in practice, we can
only unmap down to a minimum of one panel, so that the
program can still perform work.

Assuming that eviction of pages with no action by the
program is an indicator of memory shortage, a program ex-
periences memory shortage if and only if our algorithm de-
tects it. Using variable subscripts to denote the iteration
number, observe that lastRSS� is the RSS at iteration � � �

after the end of the algorithm and before the panel access.
If the condition of the algorithm holds, RSS� � lastRSS�,
RSS decreased during the access of the last panel, so there
must be memory shortage. Conversely, if there is mem-
ory shortage it will manifest itself by reducing RSS during
the access of the last panel. Since lastRSS� records the last
value of RSS at �� � iteration, the condition will hold.

We note that operating systems employing a page-fault
frequency (PFF) strategy for preventing thrashing will re-
claim pages from a process under no memory pressure.
If the page-fault rate of the process falls below a certain
threshold, the OS removes page frames from the process; if

Algorithm: Adapting to memory variability
RSS = Get current RSS
if ( RSS � lastRSS ) & ( Panels in � � )

diff = (lastRSS-RSS) / Panel size
unmap diff panels, Panels in �= diff,
dRSS �= diff * Panel size

else if ( dRSS == RSS ) & ( Panels in � � )
peakRSS = max( peakRSS, RSS )
delay = Time to access the last � panels
if (Time since last unmap �

delay * min(10, peakRSS�(peakRSS�RSS)) )
Panels in ++
dRSS += Panel size
peakRSS = RSS

endif
endif
lastRSS = Get current RSS

Figure 1. The complete algorithm for adapting
to memory variability

the process then increases its page fault rate, the OS will
give frames back. Under a PFF strategy, our algorithm
may interpret this probing by the OS as memory shortage
and evict a panel. The page-fault frequency of the pro-
gram will increase, prompting the OS to allocate more page
frames. Panels in will eventually return to its original level,
but some performance penalty will have been incurred by
the unnecessary eviction. We believe this problem could
be eliminated by requiring that (lastRSS � RSS) exceed a
threshold before action is taken, but we have not yet had the
opportunity to test our algorithm under a PFF system.

4.2 Detecting memory surplus

Because the operating system provides no mechanism
for determining memory availability, we must employ an
invasive approach. We periodically probe the system, at-
tempting to increase memory usage by one panel. If enough
memory is available, RSS should grow by one panel. If
memory is not available, then RSS will remain constant, or
decrease as the operating system responds to memory pres-
sure by evicting pages.

We should not probe for more memory if RSS � dRSS.
This condition indicates that parts of mapped panels have
been paged out by the system. If memory is available, RSS
will grow as panels are touched and pages are brought back
into memory. When RSS = dRSS, and if there are addi-
tional panels to map, then we may probe, performing the
next mapping of a panel without replacement. If the new
dRSS cannot be maintained, RSS will eventually decrease
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below lastRSS and the Detect Shortage algorithm will take
memory usage back to a safer level.

The simplest policy is to attempt to increase Panels in
whenever RSS = dRSS. This policy is too aggressive, how-
ever. It continually pushes Panels in above a safe level,
incurring a significant performance penalty each time this
happens. Figure 2a depicts experimental results that illus-
trate this. In the experiment, there is room to keep 40% of
the panels in memory. Our program is able to temporar-
ily obtain enough memory to hold up to 60% of the panels.
Quickly, however, the operating system senses a memory
shortage and begins reclaiming pages from the program,
sometimes reducing RSS significantly below 40% of the
panels. The program adapts by decreasing Panels in back to
the safe value of 40%. Eventually all mapped pages come
back into resident memory, and the cycle repeats.

We can reduce the aggressiveness of our policy by de-
laying growth of Panels in for a time after Panels in has
been reduced by the Detect Shortage algorithm. Choos-
ing an appropriate delay is a balancing act between two
sources of performance penalties. If a probe is unsuccess-
ful, this induces what we call an “incursion” penalty be-
cause it will induce paging and a subsequent performance
decrease. On the other hand, if the program’s memory us-
age stays below the amount of memory available, it suffers
an “inaction” penalty because some panels will be loaded
from secondary storage when they could instead reside in
main memory. We assume a simple model in which the
time � to fetch � words from disk depends only on the
bandwidth �� of the disk. This model is very simplistic,
but is appropriate in our case because we access large, con-
tiguous blocks of data; seek times are largely hidden by
prefetching. Define maxRSS to be the maximum amount
of memory currently available to our program. If the pro-
gram stays at RSS, then for each iteration (that is, a cycle
through all panels), (maxRSS - RSS) of data which could
have been kept in-core will be brought from disk, incurring
an inaction penalty of (maxRSS - RSS)/�� seconds. If the
program probes beyond maxRSS, the operating system re-
sponds by decreasing RSS. As figure 2a shows, in the worst
case Panels in may be reduced all the way down to 1. The
incursion penalty then is roughly (maxRSS���), because
all of the evicted panels will have to be brought back in.

We attempt to choose a delay that balances the two
penalties. This suggests that we consider the quantity

���� = maxRSS�(maxRSS - RSS),

which is the ratio of the incursion and inaction penalties.
When RSS is zero, the inaction penalty is as great as the
incursion penalty, so we have nothing to lose by probing for
more memory; thus when ���� � �we should probe as soon
as possible. When the ratio is greater than unity, it indicates
that the possible incursion penalty outweighs the possible

inaction penalty by that ratio; thus suggests we should wait
���� times as long as we would in the ���� � � case before
probing. Given a base delay time, then, we can scale it by
���� to determine the delay:

delay = (base delay) *
maxRSS�(maxRSS - RSS)

We have noted that when RSS is close to 0, we should probe
for memory as soon as possible. Since we never probe un-
less RSS=dRSS, after Detect Shortage causes an unmap-
ping the program may have to wait for a full iteration (cycle
through the panels) for RSS to grow to dRSS. Thus the time
for an iteration provides a reasonable approximation for the
minimum delay, and therefore is a natural value for the base
delay.

The complete memory adaptation algorithm is shown in
figure 1. Our code maintains a queue of timestamps for the
the last � panel accesses to determine the base delay. Be-
cause we do not know maxRSS, we must approximate it
somehow. We use peakRSS, which is the maximum RSS
that has been achieved by the program since the last probe
for more memory. Figure 2 demonstrates how the introduc-
tion of our delay parameter improves performance.

4.3 Graceful degradation of performance

Given the algorithm in figure (1), which closely tracks
the available memory in the system, and a user defined re-
placement policy, our approach can achieve a nearly opti-
mal caching scheme. The remaining question is whether
the system can exploit this caching efficiently. Ideally, we
would expect a linear increase in execution time as the avail-
able memory decreases. Figure (3) provides evidence that
performance does degrade gracefully and adaptively. The
left figure shows that a static version of our method benefits
almost linearly from more cached panels up to the point of
memory contention. On the other hand, a traditional out-
of-core implementation is mainly insensitive to the panel
size, favoring rather small panels. The right figure shows
that our dynamic scheme achieves the same linear degrada-
tion of performance under increasing load but without any
foreknowledge of available memory.

5 Conjugate Gradient experiments

To test our adaptive strategy and supporting library in
the context of a scientific application, we implemented it in
a conjugate gradient (CG) linear system solver using the
CG routine provided in SPARSKIT [16]. The computa-
tional and storage requirements of CG are typical of many
other scientific algorithms. Each iteration requires a sparse
matrix-vector multiplication and a few dot products. The
program requires storage for only four vectors while the
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Figure 2. RSS (solid line) and desired RSS (dashed line) versus time for two versions of a memory-
adaptive program that performs dense matrix-vector multiplications with a 70 MB matrix broken into
10 panels. It runs against a 70 MB dummy job on the Linux machines described in section 5. Circles
denote the beginning of a matrix-vector multiplication. The left graph (a) uses the original algorithm
with no delay. It is too aggressive, continually pushing against the memory limit. In response,
the operating system evicts pages from the program, causing a significant performance penalty.
The right graph (b) utilizes a dynamically determined delay to reduce this penalty: after a memory
shortage is detected, attempts to grow memory usage must wait until the delay has elapsed. Using
the dynamic delay, the algorithm settles at what is close to the optimal value for dRSS (dashed line)
and diminishes RSS (solid line) fluctuations.
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Figure 3. Graceful degradation of performance. The left graph shows the execution times (designated
by circles) for a static version of our method that caches a constant number of panels. Also, it shows
the times (designated by triangles) for a traditional out-of-core (OOC) implementation for various
sizes of its single panel. We report times running with a 70 MB matrix against two cases: a 50 MB
(solid lines) and a 70 MB (dashed lines) external load running on the Linux machines described in
section 5. Increasing the number of panels cached improves performance almost linearly as long
as the amount of available available memory is not exceeded; times increase towards the right of
the graph as the amount of panels cached exceeds available memory. In the right graph, a similar
graceful degradation of performance is observed for our dynamic method under external loads of
increasing size. However, the number of panels cached is chosen dynamically.
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bulk of the memory demand comes from the coefficient ma-
trix. In our experiments, the driver program breaks the ma-
trix into � � �� panels and stores them on disk. Work
vectors are kept in-core. We note that the CG routine is
not modified, and we use an off-the-shelf blocked sparse
matrix vector multiplication with only a single call to our
get next panel() function. We use both sequential
and parallel versions of the solver. In the parallel version,
whenever a matrix-vector or inner product is called for, a
collective communication operation must occur.

We conducted a series of experiments on four identically
configured 1 GHz Pentium III machines with 128MB of
DRAM. All machines run Linux 2.4.18-19.7 and are con-
nected to the same fast Ethernet switch. We use gcc and
g77 compilers and the LAM MPI communication library
for the parallel version.

5.1 Sequential experiments

Some results have already been described in section 4.
Here, we compare four different ways to implement a CG
code. Besides a standard in-core implementation and our
memory adaptive one, we also use a conventional out-of-
core code, as well as an in-core code that stores the ma-
trix on disk and accesses it via a read-only memory map to
avoid inefficient write-outs to the swap device. Table 1 sum-
marizes what happens when any possible combination of
two sequential CG solvers are run against each other. Each
solver runs on a 70MB matrix with a total of 81MB storage
requirements; this causes considerable memory pressure, as
only about 105 MB total are available to the programs. The
performance of the in-core code under memory pressure is
very poor, as expected. The memory-mapped code per-
forms well if it is started first, but it is starved when jobs
other than out-of-core are already running. The out-of-core
code performs consistently against all other codes, but its
lack of adaptivity does not justify general purpose use. The
memory adaptive code works well in all cases, even when
run against itself, demonstrating its truly dynamic nature.

In table 2 we present results like those from table 1 but
obtained under Solaris 8. Detailed discussion of the per-
formance of our adaptation scheme under Solaris is beyond
the scope of this paper, but we wish to show that the scheme
works under both Linux and Solaris, though the systems use
different memory-management strategies.

5.2 Parallel experiments

In our parallel CG experiments on four processors, we
used the in-core and memory-adaptive versions of the solver
to solve a problem with a 280 MB coefficient matrix aris-
ing from an eighth-order finite-difference discretization of
a three dimensional Laplacian problem. To create mem-

Time for method X running against Y
�
�
�
�
�

X
Y

incore ooc mmap mema

incore 204.00 0.82
0.66

20.50
27.00
22.50

ooc 5.00
8.82
9.60

4.90 5.10

mmap
0.70

35.00
0.84

0.67
35.00

0.79
35.00

mema 0.76 0.90
4.50
0.72

0.89
5.34

Table 1. Average time per iteration for method
X when running against method Y. “incore”
denotes a standard in-core algorithm, “ooc”
a conventional out-of-core one, “mmap” an
in-core algorithm that uses memory-mapped
I/O to read the matrix, and “mema” our mem-
ory adaptive code. Both jobs execute CG on
a 70 MB matrix, reading it from different files
where applicable. The time is measured af-
ter both methods have stabilized sharing the
CPU. One of the jobs is started 9 seconds
after the other. If one time is reported, it is
independent of starting order. If two times
are reported, the top is the time for method
X when X is started first, while the bottom is
the time when X is started second.

Time for method X running against Y
�
�
�
�
�

X
Y

incore ooc mmap mema

incore 493.0 11.74 239.8 203.4
ooc 20.25 92.10 19.76 19.87
mmap 7.59 12.18 99.72 66.34

mema 5.32 9.89
33.33
42.30

38.66

Table 2. A table like table 1, but showing ex-
perimental results obtained on a SunBlade
100 workstation with 384MB running Solaris
8. Both jobs execute conjugate gradient on
a 192 MB matrix. Note that the in-core code
is “starved” by the OS when running against
the memory-adaptive or memory-mapped I/O
codes.
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Figure 4. Execution times for each iteration
for the first 25 iterations of the parallel CG
code running against a 70MB external job.
The two sets of data correspond to the two
possibilities shown in figure 5. Even the
slower set of times are far lower than those
obtained by relying on the virtual memory
system.

ory pressure, the root node executes a memory-intensive
70 MB dummy job. We have used a job that allocates
memory and continuously writes random numbers to it as
well as a sequential in-core CG code. Results were identi-
cal using either dummy job, and are consistent with those
observed in the sequential tests. Without competition, the
in-core code averages 0.72 seconds per iteration, and the
memory-adaptive code 0.73 seconds. When running against
the dummy job, the in-core code performs very poorly, tak-
ing anywhere from 32 to 80 seconds per iteration. Under
constant memory pressure, the memory adaptive code av-
erages between 8 and 9 seconds, consistent with the slow-
down experienced by the sequential adaptive code under the
same memory pressure. However, the slowdown in the par-
allel case affects all nodes.

In some cases (observed in the sequential code as well),
the memory adaptive code would thrash (system mode CPU
utilization � 95%) for 40–50 seconds, after which it would
obtain enough memory resources to keep its entire local
portion of the matrix. Figure 4 illustrates for both cases how
the time per iteration changes as the solver adapts to mem-
ory pressure, while figure 5 shows the actual memory adap-
tation. Even in the slower case, the timings are far lower
than those obtained by relying on the virtual memory sys-
tem to handle memory pressure.

6 Conclusions

We have presented a framework for dynamic adaptation
to memory pressure in scientific applications. This frame-
work enables an application running on a non-dedicated
workstation to gracefully degrade its performance when it
cannot obtain the resources required to fit its data set in main
memory. It is particularly suited for non-centrally admin-
istered, open systems, such as clusters of privately owned
desktops, where loads can fluctuate unpredictably.

We have made the following key contributions: We pre-
sented a novel, system-independent algorithm that ascer-
tains the availability of main memory using a single metric,
i.e. the resident set size of the application. In addition, we
presented an algorithm that enables an application to dy-
namically and optimally adjust its resident set size in re-
sponse to memory shortage or availability. The algorithms
are portable to almost any modern operating system and
hardware platform.

In addition to easy portability, our framework has a mod-
ular design. Its use requires minimal extensions to block-
structured application kernels. Because it can be embed-
ded in a computational kernel, it can be immediately de-
ployed in any application that uses that kernel. For exam-
ple, embedding our framework in low-level libraries such
as BLAS or SPARSKIT makes it immediately available to
higher level libraries, such as LAPACK and scaLAPACK,
that depend upon them. In turn, applications that rely on
these higher level libraries can immediately benefit from the
framework.
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