
Engineering PFLOTRAN for Scalable Performance on
Cray XT and IBM BlueGene Architectures

Richard Tran Mills1, Vamsi Sripathi2, G. (Kumar) Mahinthakumar3, Glenn
E. Hammond4, Peter C. Lichtner5, Barry F. Smith6

1Computational Earth Sciences Group, Computer Science and Mathematics Division, Oak Ridge
National Laboratory, Oak Ridge, TN 37831-6015
2Department of Computer Science, North Carolina State University, Raleigh, NC 27695-8206
3Department of Civil, Construction, and Environmental Engineering, North Carolina State
University, Raleigh, NC 27695-7908
4Hydrology Group, Environmental Technology Division, Pacific Northwest National
Laboratory, Richland, WA 99352
5Hydrology, Geochemistry, and Geology Group, Earth and Environmental Sciences Division,
Los Alamos National Laboratory, Los Alamos, NM 87545
6Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL
60439-4844

E-mail: rmills@ornl.gov, vamsi s@ncsu.edu, gmkumar@ncsu.edu,
glenn.hammond@pnl.gov, lichtner@lanl.gov, bsmith@mcs.anl.gov

Abstract. We describe PFLOTRAN—a code for simulation of coupled hydro-thermal-chemical
processes in variably saturated, non-isothermal, porous media—and the approaches we have
employed to obtain scalable performance on some of the largest scale supercomputers in the
world. We present detailed analyses of I/O and solver performance on Jaguar, the Cray XT5
at Oak Ridge National Laboratory, and Intrepid, the IBM BlueGene/P at Argonne National
Laboratory, that have guided our choice of algorithms.

1. Introduction
Subsurface (groundwater) flow and reactive transport models have become important tools
for tasks such as understanding contaminant migration and cleanup, assessing geothermal
energy technologies, and exploring geologic carbon sequestration as a possible means to
reduce greenhouse gas emissions. Although simple groundwater models will suffice in
some instances, there there are many in which sophisticated, three-dimensional, multi-scale
models employing multiple fluid phases and chemical components coupled through a suite of
biological and geochemical reactions are required. The increased complexity of such models
demands computing power far beyond that of desktop computers, and in some cases requires
the ability to utilize true leadership-class supercomputers.

In this paper, we present analyses of I/O and solver performance in one such complex
groundwater simulation code, PFLOTRAN, on two of the most powerful computers in the
world—Jaguar, the Cray XT5 at Oak Ridge National Laboratory, and Intrepid, the IBM
BlueGene/P at Argonne National Laboratory—and discuss some of the strategies we have
employed to achieve parallel scalability on these machines.



2. The subsurface reacting flow simulator, PFLOTRAN
PFLOTRAN [1–6] solves a coupled system of mass and energy conservation equations for
a number of phases, including air, water, black oil, and supercritical CO2, and for multiple
chemical components. It utilizes a finite-volume spatial discretization combined with either
operator-split or backward-Euler (fully implicit) time stepping. PFLOTRAN is written in
Fortran 95 using as modular and object-oriented an approach as possible within the constraints
of the language standard, and, being a relatively new code, it is unencumbered by legacy code
has been designed from day one with parallel scalability in mind. It is built on top of the
PETSc framework [7–9] and makes extensive use of features from PETSc, including iterative
nonliner and linear solvers, distributed linear algebra data structures, parallel constructs for
representing PDEs on structured grids, performance logging, runtime control of solver and
other options, and binary I/O. It employs parallel HDF5 [10] for I/O and SAMRAI [11] for
adaptive mesh refinement.

PFLOTRAN employs domain-decomposition parallelism, with each subdomain assigned to
an MPI process and a parallel solve implemented over all processes. A number of different
solver and preconditioner combinations from PETSc or other packages can be used, but in this
paper we employ an outer, inexact Newton method with an inner BiCGStab linear solver or
an “improved” variant (described in Section 3.1), preconditioned with a block-Jacobi method
employing point-block ILU(0) on each subdomain. Message passing (3D “halo exchange”) is
required to exchange ghost points across subdomain boundaries, and, within the BiCGStab
solver, gather/scatter operations are needed to handle off-processor vector elements in matrix-
vector product computations, and global reduction operations are required to compute vector
inner products and norms.

3. Scalability on Cray XT and IBM BlueGene Architectures
PFLOTRAN exhibits good parallel scalability on a number of different machine architectures
including Jaguar, the Cray XT5 at ORNL, and Intrepid, the IBM BlueGene/P at Argonne,
and has been run on up to 131,072 compute cores. Figure 2 illustrates the strong-scaling
performance (using the default BiCGStab implementation) observed on the Cray XT5 and
the IBM BG/P for the flow and reactive transport solves for a benchmark problem that
simulates the release of a hypothetical uranium plume at the Hanford 300 Area in southeastern
Washington state. This problem is based on that described in [12]. Our version of the
benchmark problem consists of 850× 1000× 80 cells and includes 15 primary chemical species,
resulting in 68 million degrees of freedom for the flow solve and approximately one billion
degrees of freedom for the reactive transport solve (flow and transport are coupled sequentially
in this simulation).

Figure 1. Scaling of time spent in
MPI Allreduce() for the benchmark
flow and transport problem.

Speedup tapers off on the XT5 primarily due to
the high cost of allreduce operations on the machine.
Figure 1 illustrates the scaling of the time spent in
MPI Allreduce() for the combined benchmark flow
and transport problem; the BG/P outperforms the
XT5 at 16380 processor cores, which coincides closely
with the cross-over point for the flow solve in Figure
2. Unlike the BG/P, the XT5 does not have a
separate, tree-structured network for such operations,
which partly explains the poorer scalability on the
XT5. We believe that operating system noise is also a
significant contributor to the poor scalability observed
on the XT5, as we have observed significant load
imbalance on synthetic MPI Allreduce() benchmarks
that are perfectly load balanced within the application.
Figure 3 displays box plots (also known as box-
and-whisker plots) summarizing the MPI Allreduce()
timings (including synchronization time) on the Cray
XT5 and IBM BG/P. Interpreting these plots is somewhat less than straightforward because



the simulation employs a structured grid containing inactive cells along the river boundary;
MPI processes with many inactive cells have very little computation to do, and therefore spend
a long time waiting at MPI Allreduce() calls. These lightly-loaded processes are responsible
for the great majority of the outliers (represented by “+” symbols in the plots), although they
constitute only about 5% of the processes. Note that these wait times are much shorter on the
XT5 because the CPUs are faster, and not because the communication is better.

3.1. Mitigating Cost of Global Reductions in Krylov Solvers
At high core counts (on the Cray XT5, especially), linear solves may be dominated by cost of
MPI Allreduce() calls to calculate vector dot products and norms. We have added a PETSc
implementation of the so-called Improved BiCGStab algorithm (IBCGS) [13] that requires only
2 MPI Allreduce() calls per iteration, instead of the usual 3. If the residual norm calculation is
lagged by an iteration, it is possible to wrap everything into a single MPI Allreduce(), at the cost
of doing one additional iteration; we lag this calculation in the flow solve, where a high number
of iterations are required, but not in the transport solve, where few linear solver iterations are
required at each Newton step. The algorithm is considerably more complicated, requires the
transpose matrix vector product (applied only during the first iteration), and performs some
extra, local vector operations.

Figure 2. Scaling on the Cray XT5 and IBM BG/P systems for 30 steps of the uranium plume
migration problem benchmark. The reactive transport solve (left) has 1 billion degrees of
freedom, and the corresponding flow problem (right) has 68 million degrees of freedom. Note
that the flow problem is very small for these core counts.

Figure 3. Box-plots of MPI Allreduce timings (including synchronization time) for the XT5
(left) and BG/P (right) for the flow and reactive transport benchmark problem. Points which
cross the whiskers are marked with ”+” symbols and represent outliers.



Figure 4. Comparisons of the conventional BiCGStab (BCGS) algorithm and the Improved
(IBCGS) algorithm for a 68 million degrees of freedom flow problem on the Cray XT5 (left)
and IBM BG/P (right, with performance for accompanying transport problem with 1 billion
degrees of freedom also depicted). This is an artificially small problem for these high core
counts, so the cost of communication dominates, as there is relatively little computation per
core to be done. Due to variability in machine performance as well as IBCGS iteration counts,
best, worst, and median times are reported for the XT5 runs.

Despite the somewhat higher operation count, the reduced communication costs can lead
to significant performance gains; we have found that the restructured solver is generally faster
on the Cray XT4/5 using more than a few hundred processor cores. Figure 4 displays the
performance of the conventional and restructured BiCGStab solvers on the Cray XT5 and
IBM BG/P. Due to instability within the restructured solver, the number of iterations required
to solve the same problem varies between runs. The restructed algorithm offers significant
performance improvements on the Cray XT5, but on the IBM BG/P, where global reduction
operations exhibit better scalability, we observe little performance improvement.

3.2. Improving Parallel I/O with a Two Phase Approach
PFLOTRAN uses parallel I/O in the form of 1) routines employing parallel HDF5 to read
input files and write out simulation output fies, and 2) direct MPI-IO calls in a PETSc Viewer
backend to write out checkpoint files. The original HDF5 routines perform well on the
IBM BG/P architecture, but on the Cray XT architecture, these routines do not scale to high
core counts due to too many small I/O requests, and contention for the small number of
Lustre Metadata Servers. The rememdy this problem, members of the SciDAC Performance
Engineering Research Institute (G. Mahinthakumar and V. Sripathi) have collaborated with
the PFLOTRAN team to implement a two-phase (communication phase and I/O phase)
approach [14]. Instead of all processes participating in collective read or write operations,
the MPI global communicator is split into sub-communicators, with the root process of each
communicator performing I/O for the entire group and appropriate gather/scatters to collect
or distribute data to/from group members. We note that MPI-IO implementations generally
provide support for two-phase I/O, but we have chosen to implement this at the application
level because 1) In the PFLOTRAN initialization phase, not all processes participate in all
HDF5 read calls, and 2) Attempting to use the MPI-IO two-phase I/O results in exhaustion
of resources in the low-level Portals library used for inter-node communication on the Cray
XT architecture. Our improved I/O routines yield 25X improvement in the initialization phase
and 3X improvement in the write phase at 65,536 cores (quad-core processors) on the Cray
XT5.

4. Conclusions and Future Work
The performance of PFLOTRAN is being continuously benchmarked and improved as the
code is developed and new machines come online. In this paper we have examined the



Figure 5. Improved (two phase) read and write patterns. There are two different patterns of
reads in the initialization phase.

Figure 6. Comparisons of default initialization (read) and write behavior in PFLOTRAN with
improved two phase implementations.

performance of PFLOTRAN on two leadership-class machine architectures—the Cray XT5 and
IBM BlueGene/P—and discussed algorithmic changes made to solvers (restructured BiCGStab
algorithm) and I/O routines (two-phase I/O) to address particular performance bottlenecks
we have observed. Such work will continue as as new capabilities (e.g., unstructured grids,
structured adaptive mesh refinement, multi-continuum formulations) are developed and as
new architectures (e.g., nodes with GPU or other “accelerator” devices) come online. At a more
fundamental level than performance tuning, we also will continue to investigate scalable solver
and preconditioner algorithms that are well-tailored to our application while also possessing
intrinsic scalability.

Acknowledgements
This research was partially sponsored by the Climate and Environmental Sciences Division
(CESD) of the Office of Biological and Environmental Research (BER) and the Computational
Science Research and Partnerships (SciDAC) Division of the Office of Advanced Scientific
Computing Research (ASCR) within the U.S. Department of Energy’s Office of Science (SC).
This research used resources of the National Center for Computational Sciences (NCCS) at
Oak Ridge National Laboratory (ORNL), which is managed by UT-Battelle, LLC, for the U.S.
Department of Energy under Contract No. DE-AC05-00OR22725. Pacific Northwest National
Laboratory is managed for the U.S. Department of Energy by Battelle Memorial Institute under
Contract No. DE-AC06-76RL01830. Argonne National Laboratory is managed by UChicago
Argonne, LLC, for the U.S. Department of Energy under Contract No. DE-AC02-06CH11357.



Los Alamos National Laboratory is managed is operated by Los Alamos National Security,
LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under
contract DE-AC52-06NA25396.

References
[1] Mills R T, Lu C, Lichtner P C and Hammond G E 2007 Simulating subsurface flow and

transport on ultrascale computers using PFLOTRAN SciDAC 2007 Scientific Discovery
through Advanced Computing (Journal of Physics: Conference Series vol 78) ed Keyes D
(Boston, Massachusetts: IOP Publishing) p 012051

[2] Hammond G E, Lichtner P C and Lu C 2007 Subsurface multiphase flow and
multicomponent reactive transpo rt modeling using high-performance computing SciDAC
2007 Scientific Discovery through Advanced Computing (Journal of Physics: Conference Series
vol 78) ed Keyes D (Boston, Massachusetts: IOP Publishing) p 012025

[3] Lu C and Lichtner P C 2007 High resolution numerical investigation on the effect of
convective instability on long term CO2 storage in saline aquifers SciDAC 2007 Scientific
Discovery through Advanced Computing (Journal of Physics: Conference Series vol 78) ed Keyes
D (Boston, Massachusetts: IOP Publishing) p 012042

[4] Hammond G E, Lichtner P C, Mills R T and Lu C 2008 Towards petascale computing in
geosciences: application to the Hanford 300 Area SciDAC 2008 Scientific Discovery through
Advanced Computing (Journal of Physics: Conference Series vol 125) ed Keyes D (Seattle,
Washington: IOP Publishing) p 012051

[5] Mills R T, Hammond G E, Lichtner P C, Sripathi V, Mahinthakumar G K and Smith B F
2009 Modeling subsurface reactive flows using leadership-class computing SciDAC 2009
Scientific Discovery through Advanced Computing (Journal of Physics: Conference Series vol 180)

[6] Hammond G E, Lichtner P C, Mills R T and Lu C 2010 Ground Water Reactive Transport
Models (Bentham Science Publishers) chap PFLOTRAN: Reactive Flow & Transport Code
for Use on Laptops to Leadership-Class Supercomputers

[7] Balay S, Buschelman K, Gropp W D, Kaushik D, Knepley M G, McInnes L C, Smith B F
and Zhang H 2009 PETSc Web page http://www.mcs.anl.gov/petsc

[8] Balay S, Buschelman K, Eijkhout V, Gropp W D, Kaushik D, Knepley M G, McInnes L C,
Smith B F and Zhang H 2009 PETSc users manual Tech. Rep. ANL-95/11 - Revision 3.0.0
Argonne National Laboratory

[9] Balay S, Gropp W D, McInnes L C and Smith B F 1997 Efficient management of parallelism
in object oriented numerical software libraries Modern Software Tools in Scientific Computing
ed Arge E, Bruaset A M and Langtangen H P (Birkhäuser Press) pp 163–202

[10] The HDF Group 2009 HDF5 User’s Guide: HDF5 Release 1.8.3 NCSA
http://www.hdfgroup.org/HDF5

[11] Wissink A M, Hornung R D, Kohn S R, Smith S S and Elliott N 2001 Large scale
parallel structured AMR calculations using the SAMRAI framework Supercomputing ’01:
Proceedings of the 2001 ACM/IEEE conference on Supercomputing (CDROM) (New York, NY,
USA: ACM) pp 6–6 ISBN 1-58113-293-X

[12] Hammond G E and Lichtner P C 2010 Cleaning up the Cold War: Simulating uranium
migration at the Hanford 300 Area Proceedings of SciDAC 2010

[13] Yand L T and Brent R 2002 The improved BiCGStab method for large and sparse
unsymmetric linear systems on parallel distributed memory architectures Proceedings of
the Fifth International Conference on Algorithms and Architectures for Parallel Processing (IEEE)

[14] Sripathi V 2010 Performance Analysis and Optimization of Parallel I/O in a large scale
Groundwater Application on Petascale Architectures Master’s thesis North Carolina State
University


