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Abstract

Identification of geographic ecoregions has long been of interest to environmental scientists and ecologists for

identifying regions of similar ecological and environmental conditions. Such classifications are important for pre-

dicting suitable species ranges, for stratification of ecological samples, and to help prioritize habitat preservation and

remediation efforts. Hargrove and Hoffman [1, 2] have developed geographical spatio-temporal clustering algorithms

and codes and have successfully applied them to a variety of environmental science domains, including ecological

regionalization; environmental monitoring network design; analysis of satellite-, airborne-, and ground-based remote

sensing, and climate model-model and model-measurement intercomparison. With the advances in state-of-the-art

satellite remote sensing and climate models, observations and model outputs are available at increasingly high spatial

and temporal resolutions. Long time series of these high resolution datasets are extremely large in size and growing.

Analysis and knowledge extraction from these large datasets are not just algorithmic and ecological problems, but also

pose a complex computational problem. This paper focuses on the development of a massively parallel multivariate

geographical spatio-temporal clustering code for analysis of very large datasets using tens of thousands processors on

one of the fastest supercomputers in the world.

Keywords:
ecoregionalization, k-means clustering, data mining, high performance computing

1. Introduction

There has been a long history of both theoretical and utilitarian interest in ecological regions, or ecoregions:

regions on a map within which there exist generally similar combinations of ecologically relevant conditions like

temperature, precipitation, and soil characteristics. Because species assemblages show a high degree of fidelity to

environmental conditions, particular flora and fauna can be strongly associated with particular ecological regions, and

delineating the extent of the ecoregions can also be used to infer the the location and size of areas that are potentially

suitable for particular types of animals and plants. Thus, the classification of areas into ecoregions is useful for pre-

dicting suitable species ranges, for stratification of ecological samples, and to help prioritize habitat preservation and
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remediation efforts.

Ecoregions are also used in a more specific way to estimate the extent of suitable habitat for a particular species of

interest. In such cases, the ecological habitat requirements of a single species, sometimes referred to as its ecological

niche or permissible environmental envelope, are used to identify one or more ecoregions along a gradient of suitabil-

ity. In the case of threatened or endangered species, a well-executed ecoregion classification can be used to identify

and locate the extent of suitable habitat for the purposes of preserving or improving it. In the case of invasive species,

an ecoregion classification can be used to gauge the susceptibility of new areas to invasion. Efforts to slow or stop the

invasion can be focused within highly suitable areas rather than being squandered on areas that are not as susceptible.

Ecoregions can also be used to extrapolate or interpolate results obtained from a network of measurements or sam-

ples. A network in this case is a spatial constellation of sample locations, field stations, or monitoring instruments.

Measurements taken within one ecoregion are probably representative of the entire region, and the degree to which

another, unmeasured region is similar to the one having a measurement defines how applicable that measurement

might be within the unmeasured region. One can also determine how adequate the network of samples itself is for

representing the ecological conditions within the greater map that contains it. Regions most poorly represented by

the network (i.e., most different from the most similar sample) are the best candidates within which new, additional

samples should be taken.

Until recently, ecoregions were usually delineated freehand by human experts, and thus represented codifications

of expert opinion. While experts can justify their placement of ecoregion boundaries in particular locations, the meth-

ods used in such delineations are neither transparent nor repeatable. Neither are the datasets being used open for

inspection. In an effort to make the ecoregion delineation process more rigorously quantitative, two of us [1] began to

explore the use of multivariate statistical clustering, using the k-means algorithm, as an approach for ecoregion classi-

fication. Such an approach, based on selected ecological characteristics supplied as map layers within a Geographical

Information System (GIS) system, quantifies ecological similarity as the inverse of Euclidean distance separating two

points in a data space having as many dimensions as there are input map layers, once the normalized values from each

map layer are used as coordinates to locate each point. Two points that lie close to each other in data space will, by

definition, have a very similar combination of input characteristics, and should perhaps therefore be classified into

the same ecoregion. Because the k-means clustering analysis is entirely independent of the geographic location, the

process is free to identify even the points widely separated in space as being in the same ecoregion, given enough

similarity in the ecological conditions at each point. Thus, even spatially disjoint or distant mountaintops or swamps

can be identified as having a high degree of ecological similarity.

A rich body of research in computational data mining exists in the literature with work done by various researchers

on the development of clustering algorithms [3, 4, 5, 6]. However, clustering of large datasets remains a computa-

tionally intensive and challenging task. Judd et al. [7] designed and implemented a parallel clustering algorithm for

a network of workstations. They used a client-server approach where a block of work assignments were sent to each

client process, which then calculates the block partial sum of each cluster and sends the results back to the server.

The server collects the partial sums from all clients, calculates the new centroids and returns the new centroids to

all clients to begin a new iteration. They used Parallel Virtual Machine [8] and Message Passing Interface (MPI) [9]

for their implementation. They applied the method to datasets with up to 262,144 records and tested the scaling for

up to 16 processors. Dhillon and Modha [10] developed a parallel k-means algorithm based on a message-passing

model. They distributed the data to each parallel process to operate on them independently. A synchronization step

was carried out at the end of each iteration using MPI Allreduce. They applied their implementation to datasets with

up to 2,097,152 records (with 16 dimensions per record) and achieved excellent scaling for up to 16 processors. Li

and Chung [11] developed a parallel bisecting k-means algorithm and implemented it in Java, using Remote Method

Invocation (RMI) for interprocess communication. The largest dataset tested by them had 2,097,152 records (with 8

dimensions per record). They achieved good scaling with their method up to 8 processors on a Linux cluster. While

design and implementation of parallel clustering algorithms has been reported by many researchers in the literature,

the application of most of them has been limited to small datasets on small scale computing clusters. State-of-the-art

satellites, airborne and ground-based remote sensing stations and global climate models provide massive amounts of
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data that can be utilized for ecology and environmental sciences studies. The focus of work reported here is the design

and implementation of a massively parallel clustering algorithm to enable the analysis of massive amounts of data

using some of the largest supercomputers in the world.

2. Cluster analysis algorithm

2.1. The k-means Algorithm

k-means is a popular algorithm for clustering of a dataset (X1, X2, ..., Xn) with n records into k clusters. The

number of desired clusters, k, is supplied as an input to the algorithm and remains fixed. The iterative algorithm starts

with initial “seed” centroids (C1, C2, ..., Ck) and tests the Euclidean distance of each map cell (Xi, 1 ≤ i ≤ n) to

every centroid (C j, 1 ≤ j ≤ k), classifying it to the closest existing centroid. After all map cells are classified, a new

centroid is calculated as the mean of all dimensions of each map cell classified to that centroid. Thus, the centroids

move through the data space while the map cells remain fixed. The classification converges and iterations stop when

fewer than a fixed number of map cells change their cluster assignment from the previous iteration (we use < 0.05%).

2.2. Speedup Using the Triangle Inequality

Ecoregion classifications increase in utility and sophistication as they cover wider areas with higher spatial res-

olution, and consider greater numbers of ecological characteristics. The highly multivariate nature of the problem,

combined with the exponential increase in map cells with increasing resolution, leads to large datasets and significant

computational effort, necessitating a parallel computational approach. Unlike many parallel problems, however, the

size of the input data sets can make the k-means algorithm more I/O limited than CPU-bound. Nevertheless, the great

majority of the computations consist of Euclidean distance calculations and comparisons in higher-order data space.

An acceleration technique using the triangle inequality [12, 13] was implemented that reduces the number of

Euclidean distance calculations by establishing an upper limit on distances between data points and centroids. The

speedup algorithm eliminates unnecessary point-to-centroid distance calculations and comparisons based on the previ-

ous cluster assignment and the new inter-centroid distances. Using the triangle inequality [12], if the distance between

the last centroid assignment Cl and the new candidate centroid Cm is greater than or equal to the distance between

the point Xi and the last centroid Cl, then calculation of distance between the point Xi and the candidate centroid

Cm is not required. The triangular inequality states that d(Cl,Cm) ≤ d(Xi,Cl) + d(Xi,Cm) where the function d(a, b)

represents the Euclidean distance between the points a and b. Thus, d(Xi,Ml) ≥ d(Ml,Mm) − d(XI ,Cl). Therefore,

if d(Cl,Cm) ≥ 2d(Xi,Cl), it can be concluded that d(Xi,Cm) ≥ d(Xi,Cl) without calculating d(Xi,Cm). Thus the can-

didate centroid, Cm, can be eliminated without ever computing its distance to the point Xi because the last centroid,

Cl, is equally close or closer. The required distance evaluations can be further reduced by sorting the inter-centroid

distances. The new candidate centroids are evaluated in the order of their distance from the former centroid, Cl. No

evaluations are required once the critical distance 2d(Xi,Cl) is surpassed. The nearest centroid is known from a pre-

vious evaluation. When the number or points, n, is much larger than the number of clusters, k, the cost of sorting

inter-centroid distances is negligible. The time required to complete each iteration also decreases as the clusters ap-

proach convergence, i.e., fewer data points change their cluster membership, and the locations of the cluster centroids

stabilize.

2.3. Empty Clusters and Centroid Warping

It is possible for a centroid to have no member map cells assigned to it at the end of an iteration. Such empty

clusters, if not populated at convergence, will result in dividing the map into fewer ecoregions than specified by the

user. Our implementation handles empty clusters using a “worst of the worst” method. During the cluster assignment

process, the sum of distances of all the points in a cluster to the cluster centroid is calculated at each process. In the

event of an empty cluster, a global reduction operation is carried out to identify the “worst” cluster with the highest

average distance. Once the “worst” cluster is chosen, the “worst” point in that cluster is identified and is assigned to

the empty cluster with its centroid set to be at that point. The centroids of all the clusters are updated at the end of the

iteration to reflect the changes due to warping. Each process keeps track of the information required to identify the

worst cluster and the point, although a global reduction is performed only when a empty cluster is found. A cluster
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Figure 1: Flowchart for parallel k-means algorithm

with a single member is never chosen for warping of an empty cluster. Any number of empty clusters can be handled

using this method. Convergence is not reached in an iteration if an empty cluster found.

2.4. Parallel k-means Clustering Implementation

A massively parallel and scalable implementation of a parallel k-means algorithm was developed for cluster anal-

ysis of very large datasets (Figure 1). The implementation was done in the C language using the Message Passing

Interface (MPI) for distributed memory parallelism [9]. The dataset to be clustered is divided among the available

number of processes, which read the data from a single file using MPI parallel file I/O. The initial seed file is read

by one processor (Rank 0) and is broadcast to all the processes. The algorithm works exactly the same way as the

standard serial k-means algorithm. However, every process operates only on its chunk of the dataset, carries out the

distance calculation of points from the centroids and assigns it to the closest centroid. Each process also calculates

the partial sum along each dimension of the points in each cluster for its chunk for the centroid calculation. At the

end of the iteration, a global reduction operation is carried out, after each process obtains the information, to calculate

the new cluster centroids. Iterations are carried out until convergence, after which the cluster assignments are written

to an output file. For portability reasons, the options to use MPI parallel I/O or serial file I/O with scatter/gather

operations was implemented. For smaller data sets, use of serial I/O is recommended to avoid the overhead associated

with parallel I/O.

3. Application

3.1. Study Datasets

Performance of the parallel k-means algorithm and implementation was evaluated using three real-world example

datasets. These three datasets (Table 1) have been used in this study to test a broad combination of small to large n
and k clustering problems and to test the computational efficiency and scalability of the implementation.
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Table 1: Summary of datasets used

Dataset No. of dimensions No. of records Dataset size

fullUS 25 7,801,710 745 MB

AmeriFlux 30 7,856,224 900 MB

Phenology 22 1,024,767,667 84 GB

fullUS Dataset: The dataset is a national map of the conterminous United States at 1 km2 resolution (nearly 8M

map cells) consisting of 25 variables from maps with values for elevation, soil nitrogen, soil organic matter, soil water

capacity, depth to water table, mean precipitation, solar irradiance, degree-day heat sum, and degree-day cold sum.

AmeriFlux Dataset: The second example strives to produce homogeneous national carbon flux ecoregions, start-

ing with 30 ecologically relevant characteristics. The input characteristics include factors relating to the abiotic

environment, including temperature and precipitation during the growing and non-growing seasons, and several soil

characteristics, as well as satellite-based characteristics of the vegetation, including seasonal leaf area index and

greenness, as well as percent tree and shrub cover. Finally, modeled estimates of seasonal gross primary productiv-

ity and respiration are included. The proximate purpose of this ecoregionalization was to gauge the adequacy and

representativeness of the DOE AmeriFlux network of carbon eddy flux co-variance measurement towers. The input

layers and purpose are more thoroughly described in [5] and at http://www.geobabble.org/flux-ecoregions/.

Phenology Dataset: The third example sets out to delineate national phenological ecoregions, or phenoregions.

Phenoregions are ecoregions within which the vegetation has the same timing of green-up in the spring and brown-

down in the fall. This third dataset consists of a temporally-smoothed MODIS-based greenness index, calculated and

accumulated at 16-day intervals for the calendar year, over the years 2003 through 2009 nationally at 231 m resolu-

tion. There are 146,395,381 map cells in the phenology dataset, each with 22 characteristics, consisting of consecutive

greenness observations. The dataset is divided into homogeneous phenoregions nationally.

3.2. Computational resources used

Work reported in this study was carried out using Jaguar, a Cray XT5 supercomputer at Oak Ridge National

Laboratory. It consists of 18,688 compute nodes of dual hex-core AMD Opteron 2435 (Istanbul) processors running

at 2.6 GHz, 16 GB of DDR2-800 memory, and a SeaStar 2+ router. It contains a total of 224,256 processing cores,

300 TB of memory, and a peak performance of 2.3 petaflops.

4. Results and discussions

4.1. Scaling with increasing k (number of clusters) and n (dataset size)

The parallel k-means algorithm was applied to three above mentioned datasets of different sizes (n) and for dif-

ferent number of desired clusters (k). The purpose of these studies was to understand the performance and scalability

of the algorithm for clustering increasingly large datasets and for increasing numbers of clusters. Figure 2 shows the

scaling of the three datasets of increasing size for increasing numbers of clusters, k = 10, 25, 50, 100, 500 and 1000.

Good performance was achieved by the algorithm in terms of simulation time for all the datasets. Also, a significant

improvement in the scaling was achieved by the use of the triangle inequality acceleration technique. As the required

number of distance evaluation increases with the increase in the number of desired clusters, the improvement due to

use of acceleration techniques increases significantly. Figure 3 shows the number of distance calculations required

for the clustering with and without the use of triangle inequality acceleration. Simulations for results presented in

Figures 2 and 3 were carried out using 1024 processing cores.
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(a) fullUS dataset: with and without acceleration
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(b) AmeriFluxIIIA dataset: with and without acceleration
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Figure 2: Simulation time of parallel k-means algorithm with increasing k and n (X-Axis: Number of desired clusters, Y-Axis: CPU Time)
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(a) fullUS dataset: with and without acceleration
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(b) AmeriFluxIIIA dataset: with and without acceleration
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Figure 3: Scaling with increasing k and n (X-Axis: Number of desired clusters, Y-Axis: Number if Euclid distance calculations)
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Figure 4: Scaling of the parallel k-means algorithm on Jaguar Cray XT5 for the Phenology dataset

4.2. Scaling with processing cores
Computational complexity of the clustering simulations increases with the increase in the size of the dataset and

the number of desired clusters leading to a very long time to solution. Large numbers of processors available on

ultra-scale supercomputers can be used to reduce the time to solution for the clustering simulations and make it

feasible to carry out large numbers of simulations required for environmental and ecological studies. However, it is

necessary to design the implementation to efficiently use larger numbers of processors. A detailed scaling analysis

of the developed parallel k-means algorithm was carried out. Figure 4 shows results of the scaling analysis of the

algorithm using the Phenology dataset for 50 and 1000 desired clusters. Excellent scaling was achieved up to 32,768

processors on the Jaguar Cray XT5 system for the dataset of approximately 84 GB in size (single precision binary). It

can be observed that the time spent doing file I/O (read and write) during the cluster analysis increases slightly with

the increase in number of processors, but the time for distance calculations is significantly reduced with computations

being distributed to a larger number of processors, leading to a reduction in time-to-solution. The increase in file

I/O times (especially read) with increasing processing cores is an artifact of Lustre filesystem performance on the

Cray XT5 system. For 50 clusters (Figure 4a) a decrease in simulation time is observed up to 8192 processors, until

file I/O overhead takes over the gain in speedup due to parallel distance calculations by the algorithm, leading to an

overall increase in simulation time. Similar patterns of file I/O overhead (Figure 4b) were also observed for the 1000

clusters case. For larger numbers of desired clusters requiring significantly more distance calculations, better speed

up is achieved by the parallel clustering algorithm. The time spent in file I/O is negligible compared to the speedup

achieved by the distance calculations, thus good scaling is maintained up to 32,768 processors (Figure 4b). The

developed implementation can be readily applied to analysis of even larger datasets and can efficiently use hundreds

of thousands processors on modern supercomputers.

4.3. Load imbalance
For the standard k-means algorithm, with an equal distribution of data among the parallel processes, exactly the

same amount of computation would be required by each process for clustering. However, use of the triangle inequality

acceleration technique avoids many unnecessary distance evaluations. This reduction in computation will usually be

different for different processes, inducing some load imbalance in the parallel cluster algorithm. The magnitude of load

imbalance depends on the dataset and on the number of clusters desired. Figure 5 shows the load imbalance in terms

of the number of distance calculations performed by each process (using 1024 processes) for the standard k-means

and triangle inequality accelerated parallel k-means algorithms for the fullUS and AmeriFlux datasets. While some

load imbalance is introduced by the triangle inequality acceleration algorithm, it is acceptable given the significant

reduction in the computation achieved by it.

4.4. Ecoregionalization based on the Phenology dataset
A wide range of cluster simulations were carried out for all three datasets, and results were analyzed. Presented

here are some results and analysis based on the phenology dataset. Figure 6 shows a map of phenoregions for the
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(a) fullUS dataset: with and without acceleration
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Figure 5: Load imbalance due to triangle inequality acceleration

Figure 6: The 2008 map of 50 phenoregions defined for the CONUS derived from cluster analysis of Phenology data

conterminous United States for the year 2008 derived from geospatiotemporal cluster analysis from the Phenology

dataset. Comparison of phenostates over time could allow the identification of abnormal events, like change in vege-

tation health, forest fires, disease outbreaks, etc. Such analyses are one of the primary motivation for the current work

under the U.S. Forest Service’s Forest Incidence Recognition and State Tracking (FIRST) program [14]. The results

of the cluster analysis of Phenology datasets has been successfully applied to the identification of several anomalous

forest incidents, like the mountain pine beetle (MPB) outbreak in Colorado, USA. Figure 7 shows the results of such

an analysis of phenostate transition between 2003 and 2008 in Colorado successfully identifying the MPB outbreak.

5. Conclusion

Such efforts as these should make it possible to realistically consider clustering even larger datasets, such as the

entire historical run of MODIS data, which has covered the conterminous United States at 500 m2 resolution every 16

days, from 2002 to present. We envision that such a dataset, in conjunction with parallel clustering implementations

such as those described here, could form the basis for a national ecological monitoring and early warning system. This

system could compare the state of ecosystems as just observed to all past historical states, checking for deviations from

expected or nominal seasonal behavior. Unusual or unexpected activity, once highlighted, could be verified on the

ground for the presence of ecological threats like wildfire, insect outbreaks, or invasive species. Once the exhaustive

historical clustered states are statistically identified, the assignment of each map cell to the most similar pre-defined
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Figure 7: The map of relative transition of phenoregions between 2003–2008 for Colorado, USA

state is not computationally difficult. However, the successful ingestion and clustering of a long remote sensing record

like MODIS, in concert with actual climatic, soil, and topographic data, will require an extremely efficient parallel

implementation of multivariate clustering.
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