
Adventures in Vectorizing the Community Land Model

Forrest M. Hoffman
Climate and Carbon Research Institute (CCRI)

Oak Ridge National Laboratory
P.O. Box 2008

Oak Ridge, Tennessee 37831–6008
forrest@climate.ornl.gov

Mariana Vertenstein
National Center for Atmospheric Research (NCAR)

Hideyuki Kitabata
Central Research Institute of Electric Power Industry (CRIEPI)

James B. White III, Patrick Worley, and John Drake
Oak Ridge National Laboratory

Matthew Cordery
Cray Inc.

Abstract

Described here are the extensive efforts of the authors to modify the Community Land Model for
vectorization on the Earth Simulator in Japan and the Cray X1 at Oak Ridge National Laboratory. This
paper follows experimental results presented at the Cray Users Group (CUG) Meeting in 2003 (White,
2003). Presented here are the technical details of the old and new internal data structures, the required
code reorganization, and the resulting performance improvements. Additionally, performance and scaling
of the final Community Land Model Version 3 (CLM3) on the IBM Power4, the Earth Simulator, and
the Cray X1 are compared.

mailto:forrest@climate.ornl.gov

1 Introduction

The Community Land Model (CLM) is a single col-
umn (snow-soil-vegetation) biogeophysical model of
the land surface. Written in Fortran 90, CLM can
be run offline (i.e., run in isolation using stored at-
mospheric forcing data), coupled to an atmospheric
model (e.g., the Community Atmosphere Model), or
coupled to a climate system model (e.g., the Com-
munity Climate System Model) through a flux cou-
pler (e.g., Coupler 6). When coupled, CLM ex-
changes fluxes of energy, water, and momentum with
the atmosphere.

Originally developed as the standalone Common
Land Model (Dai et al., 2003), the code was sig-
nificantly modified for integration with the Com-
munity Atmosphere Model (CAM) (Bonan et al.,
2002) and the Community Climate System Model
(CCSM) (Kiehl and Gent, 2004) in 2001 and 2002.
This prior development work targeted cache-based
scalar multi-processor computer platforms and re-
sulted in code which would not vectorize. The avail-
ability of the Earth Simulator in Japan and the Cray
X1 at Oak Ridge National Laboratory spawned re-
newed interest in running climate models—including
CLM—on vector architectures. This lead to the
need to rewrite the model to provide good perfor-
mance on both vector and scalar architectures in
2003.

The primary obstacles to vectorization were the
layout of the internal data structures and the or-
ganization of the processing loops in CLM2.1. The
internal data structures were based on a hierarchy
of pointers to derived data types each containing
scalar quantities. This layout resulted in large, un-
predictable strides among variable elements. The
model had many high level loops over various grid
and subgrid units. In each loop, science subroutines
were called for each grid or subgrid unit member.
The loops within the science subroutines were all
short and contained negligible work.

Early vectorization experiments carried out sep-
arately by Kitabata on the Earth Simulator and
White on the Cray X1 demonstrated significant per-
formance improvement by eliminating the hierarchy
of derived data types in favor of traditional Fortran
arrays and by pushing long grid and subgrid unit
loops “down” into science subroutines where they
were then typically interchanged with short loops
(White, 2003). While these experiments were be-
ing carried out, a strategy for rewriting the CLM
code was being developed to meet the requirements
put forth by the research community. Researchers

Plant functional types:
Vegetation state variables.
PFTs may compete for
column−level resources.

Gridcells:
Computational grid shared
with the atmosphere model.

Geomorphologically distinct
land cover types (glacier,

Landunits:

lake, crop, urban, etc.).

Columns:
Water, snow, and soil state
variables.

L1 L2 L3 L4

C1 C2 C3 C4

P1 P2 P3 P1 P2

gridcell

Figure 1: The CLM subgrid hierarchy

wanted a single CLM code that would run well on
both vector and scalar architectures while maintain-
ing the hierarchical nature of the internal data struc-
tures. The use of conditionally compiled code blocks
(using #ifdef preprocessor macros) was to be mini-
mized, and the code modifications could not reduce
the performance on the existing scalar platforms.

2 Data Structures

2.1 Hierarchy of Grid Scales

The horizontal land surface heterogeneity in CLM is
represented by a nested subgrid hierarchy composed
of gridcells, landunits, columns, and plant functional
types (PFTs) as shown in Figure 1. Each gridcell
can have a different number of landunits, each lan-
dunit can have a different number of columns, and
each column can have multiple PFTs. Gridcells rep-
resent the computational grid which is shared with
the atmospheric physics.

The landunit, the first subgrid level, is intended
to capture the broadest spatial pattern of subgrid
heterogeneity. It serves primarily to distinguish phys-
ical soil properties. Specific landunits include glacier,
lake, wetland, urban, and vegetated. The column
captures variability in soil and snow state variables
within a landunit. Water and energy states and
fluxes are tracked at the column level. The PFT,
the third subgrid level, captures the characteristic
biophysical and biogeochemical functions of broad
categories of vegetation and bare soil. Up to four
out of 15 possible PFTs differing in physiology and
structure may be contained within a single column.

2

Biophysical processes are simulated for each sub-
grid unit independently, and prognostic variables are
maintained for each subgrid unit. Processes related
to soil and snow require PFT-level properties to be
aggregated up to the column level. Aggregation is
usually accomplished by computing a weighted sum
for each quantity over all PFTs within a column.
Similarly, different PFTs compete for the resources
tracked at the column level. A complete description
of the biophysical processes simulated by CLM is
available in the Technical Description of the Com-
munity Land Model (CLM) (Oleson et al., 2004).

This hierarchical subgrid organization is reflected
in the data structures used in the model code. In
CLM2.1, the hierarchy was implemented as arrays
of pointers to derived data types at each subgrid
level. The flux and state variables were implemented
as scalars in every instance of a derived data type.
While this object-style layout is reasonable for cache-
based scalar platforms, it is not conducive to vector
processing. After considerable discussion and exper-
imentation on the Cray X1, a new organization was
developed which would retain the hierarchy in the
data structures while allowing for loop vectorization.

Using a testing methodology developed in the
vectorization experiments performed by White, the
new proposed data structures were added to the ex-
isting code. A vectorized version of the most costly
code branch, the Biogeophysics1() routine which
calls the computationally intensive CanopyFluxes()
subroutine, was also added to the code. In this ex-
periment, data were copied from the original data
structures into the new data structures, and then the
original Biogeophysics1() subroutine was called,
followed by the vectorized version of the subroutine
which used the new data structures. For each time
step in the model run, after the non-vector and vec-
tor subroutines were called, the results contained in
the old and new data structures were compared to
ensure only round-off differences.

Timing utilities included in the CLM code were
used to measure performance differences between the
original and the new vector versions of the code
branch. Using the proposed hierarchical data struc-
tures, the performance improvement matched that
of prior vectorization experiments (White, 2003).
The strategy for further vectorization was to use the
same testing methodology for each code branch in
turn to ensure that model results were equivalent at
each time step and to monitor performance improve-
ment. As vectorization progressed, the code would
be tested by Kitabata on the Earth Simulator and
NEC platforms to ensure similar performance gains

p pft_type

column
landunit
gridcell
itype
area
wtcol
wtlunit
wtgcell
. . .

c column_type

pfti
pftf
npfts
landunit
gridcell
itype
area
wtlunit
wtgcell
. . .

l landunit_type

coli
colf
ncolumns
pfti
pftf
npfts
gridcell
itype
area
wtgcell
. . .

g gridcell_type

luni
lunf
nlandunits
coli
colf
ncolumns
pfti
pftf
npfts
itype
area
wtglob
. . .

ngridcells
area
. . .

clm3 model_type

Additional state and
flux data types are
contained at every
level in the hierarchy.

Listed here are
integer arrays which
index subgrid units
up or down the
hierarchy, counts of
lower subgrid units,
gridcell types, and
real(r8) areas and
weights.

Figure 2: The new CLM3 data structure hierarchy

on these systems. The new data structures and vec-
torization strategy were subsequently presented to
and approved by the Land Model Working Group
and NCAR researchers in the summer of 2003.

The new data structures now in CLM3 consist
of derived data types for each subgrid unit as shown
in Figure 2. Each grid and subgrid unit data type
in the hierarchy contains a number of physical and
chemical state and flux data types. These data types
typically contain real arrays for the state and flux
variables which were previously represented as scalars
in multiple instances of data types. Vertical hetero-
geneity is represented by a single vegetation layer,
10 layers for soil, and up to five layers for snow, de-
pending on the snow depth. Multi-layer quantities
are stored as two-dimensional real arrays. Using real
arrays at every level in the hierarchy maximizes op-
portunities for contiguous memory access, thereby
providing significantly better performance on vector
architectures. All arrays contained in derived data
types are implemented as Fortran 90 pointers. Mem-
ory for these arrays is allocated dynamically during
model initialization.

Each of these grid and subgrid data types also
contains arrays of integers which serve as array in-
dices to the higher subgrid levels or as initial and fi-
nal bounds on the lower subgrid levels. For example,
as shown in Figure 2, the column-level data type con-
tains landunit and gridcell integer arrays which
refer to the appropriate landunit and gridcell for a
given column. The column-level data type also con-
tains integer arrays named pfti, pftf, and npfts
which refer to the first and last PFTs and the total
number of PFTs, respectively, for a given column.
Each subgrid data type also contains real arrays for
surface areas and area weights at all higher grid lev-
els.

3

2.2 Decomposition and Clumps

CLM uses MPI (the Message Passing Interface) for
distributed memory parallelism and uses OpenMP
for shared memory parallelism. On the Cray X1,
the model can also stream across processing units
(called Single Streaming Processors, or SSPs) within
a Multi-Streaming Processor (MSP) based on Cray
Streaming Directives (CSDs) included in the new
code. In order to provide performance portability
across a wide range of current and future computer
architectures, a decomposition strategy partially im-
plemented in CLM2.1 was fully developed in CLM3.

When compiled for distributed memory paral-
lelism (with the preprocessor macro SPMD defined),
each MPI process will create an instance of the data
structures shown in Figure 2 containing only the
subset of data assigned to that process. A cache-
friendly blocking structure is superimposed on the
data structure hierarchy for improved computational
efficiency. This blocking structure implicitly controls
the vector length of most computations. Gridcells
are grouped into blocks (called “clumps”) of nearly
equal computational cost, and these clumps are sub-
sequently assigned to MPI processes.

The computational cost of a gridcell is approx-
imately proportional to the number of PFTs con-
tained within it. However, since computational cost
for some PFTs is higher than for others and since
similar PFTs tend to cluster geographically, balanc-
ing the workload across MPI processes requires a
more complex scheme than simply assigning contigu-
ous blocks of gridcells to clumps. To minimize the
potential for load imbalance, gridcells are assigned in
cyclic (or round robin) fashion to a pre-determined
number of clumps. The clumps are then assigned
in cyclic fashion to available MPI processes. This
scheme has proven to sufficiently distribute gridcells
of various costs among MPI processes, yielding very
good parallel load balancing characteristics for most
process counts and surface datasets.

Clumps not only define the workload for an MPI
process, they also serve to block data for shared
memory parallelism when using OpenMP or stream-
ing on the Cray X1. The number of clumps per MPI
process is determined by the parallel configuration
of the model at run time, but it may be set explic-
itly by setting the clump pproc namelist variable
to the desired number of clumps per process. When
run serially or with MPI-only parallelism, one clump
per process is used. When OpenMP is enabled, the
number of clumps per process is set to the maximum
number of OpenMP threads available. On the Cray
X1 when OpenMP is disabled, CSDs are interpreted

by the compiler in place of OpenMP directives, and
the number of clumps per process is set to four to
take maximum advantage of the four SSP units on
an MSP.

2.3 Filters

In addition to clumps, another set of structures,
called “filters,” was added to better support vector-
ized processing of columns and PFTs. Filters group
like columns or PFTs based on their process-specific
categorization and are used for indirect addressing
into the main data structure hierarchy. Filters are
created for snow, non-snow, lake, non-lake, and bare
soil columns and PFTs for each clump of gridcells.
Most filters are initialized once, but the snow and
non-snow filters must be reconstructed as snowfall
and melting occur.

3 Code Reorganization

Loops over columns and PFTs previously located in
the top level driver routine were moved down into
science subroutines to provide opportunities for vec-
torization. In CLM3, the highest level loops in the
driver routine run over clumps for each MPI pro-
cess and provide for OpenMP and Cray Streaming
parallelism. Science subroutines, called within these
loops, are passed local clump bounds for gridcells,
landunits, columns, and PFTs as needed. Relevant
filters, in the form of counts and vectors of array
indices, are also passed as needed to science subrou-
tines.

Figure 3 shows a portion of a high level loop from
the driver routine. First, the number of clumps
assigned to the process is obtained and stored in
nclumps. The subsequent loop over all clumps is
wrapped with OpenMP and Cray Streaming direc-
tives to support shared memory parallelism. Within
the loop, the bounds for gridcells, landunits, columns,
and PFTs are obtained for the clump being pro-
cessed by calling get clump bounds(). Then a sci-
ence subroutine, Hydrology1(), is called and passed
the column and PFT bounds as well as the non-lake
filters for columns and PFTs for the clump being
processed. Additional science subroutines are sub-
sequently called within the same loop. The driver
routine consists primarily of two such high level loops
which call most of the science subroutines used by
the model.

Within science subroutines, vector loops run over
grid or subgrid units. Other short loops run over
snow and soil levels within a column or PFT. In most

4

nclumps = get_proc_clumps()
!$OMP PARALLEL DO PRIVATE (nc,begg,endg, &
!$OMP & begl,endl,begc,endc,begp,endp)
!CSD$ PARALLEL DO PRIVATE (nc,begg,endg, &
!CSD$ & begl,endl,begc,endc,begp,endp)
do nc = 1,nclumps
call get_clump_bounds(nc, begg, endg, &

begl, endl, begc, endc, begp, endp)
.
.
.

call Hydrology1(begc, endc, &
begp, endp, &
filter(nc)%num_nolakec, &
filter(nc)%nolakec, &
filter(nc)%num_nolakep, &
filter(nc)%nolakep)

.

.

.
end do
!$OMP END PARALLEL DO
!CSD$ END PARALLEL DO

Figure 3: Example high level loop in the driver routine

cases, the vector loops were inserted into the short
loops for vectorization. Many loops were split into
multiple loops and temporary local arrays were used
to “carry” data between them. Many of the vector
loops use filters for indirect addressing of relevant
columns and PFTs. Since arrays in data structures
are implemented as pointers, compilers can not de-
termine if vector dependencies exist. As a result,
compiler directives are required in order to obtain
loop vectorization.

Figure 4 shows an example of a filter loop within
a science subroutine. First, local pointers are cre-
ated to shorten the notation used in equations. The
subsequent loop over all non-lake columns is pre-
ceded by Cray X1 and Earth Simulator compiler di-
rectives. The first directive tells the Cray X1 com-
piler that the loop is concurrent, meaning it may
be streamed and vectorized. The second directive
tells the Earth Simulator compiler that no vector
dependencies exist in the loop. Within the loop, the
column index is obtained from the non-lake column
filter vector, the appropriate landunit index is ob-
tained from the column’s landunit vector, and the
appropriate gridcell index is obtained from the col-
umn’s gridcell vector. Next, the landunit type and
the ground temperature of the column are checked.

! Assign local pointers to derived type
! members (landunit-level)
clandunit => clm3%g%l%c%landunit
itype => clm3%g%l%itype
! Assign local pointers to derived type
! members (column-level)
cgridcell => clm3%g%l%c%gridcell
t_grnd => clm3%g%l%c%ces%t_grnd
h2osno => clm3%g%l%c%cws%h2osno
snowdp => clm3%g%l%c%cps%snowdp
snowage => clm3%g%l%c%cps%snowage

!dir$ concurrent
!cdir nodep
do f = 1, num_nolakec
c = filter_nolakec(f)
l = clandunit(c)
g = cgridcell(c)
.
.
.

if (itype(l) == istwet .and. &
t_grnd(c) > tfrz) then
h2osno(c) = 0._r8
snowdp(c) = 0._r8
snowage(c) = 0._r8

end if
.
.
.

end do

Figure 4: Example filter loop in a science subroutine

If the landunit contains water and the ground tem-
perature is above freezing, three variables are initial-
ized to zero. Other computations are usually per-
formed within such loops.

4 Vector Performance

Preliminary vectorization of CLM was completed
in October 2003. The new vectorized model has a
smaller memory footprint. The new data structures
simplify history updates and reduce the complex-
ity and number of MPI gathers and scatters. The
new vectorized model runs 25.8 times faster than
the CLM2.1 code on the Cray X1 and even runs
1.8 times faster on the IBM Power4 in offline mode.
To gauge overall performance of the new CLM3 and
determine the optimum run-time configuration, tim-
ing tests were performed on the IBM Power4, the

5

Earth Simulator, and the Cray X1. The timing tests
consisted of a series of 30 day offline runs at T85
resolution varying both processor counts (with and
without OpenMP) and the clumps-per-process tun-
ing parameter. The source code used for the tests
was that tagged clm2 deva 51 in the NCAR CVS
repository.

CLM3 may be built with a variety of options de-
pending on the computer architecture and processor
configuration to be used. Both MPI and OpenMP
may be independently enabled or disabled. With
both MPI and OpenMP disabled, the model can
run serially on a single processor. With MPI en-
abled and OpenMP disabled, the model runs in dis-
tributed memory mode across a number of nodes.
With MPI disabled and OpenMP enabled, the model
can run on a single shared memory symmetric multi-
processor (SMP) node. With both MPI and OpenMP
enabled, CLM3 runs in hybrid distributed/shared
memory mode across a number of SMP nodes.

4.1 Cray X1

On the Cray X1, CLM3 can be built with CSDs en-
abled; however, CSDs are used only around loops
which also use OpenMP directives. As a result,
OpenMP can be enabled only when CSDs are not.
When compiling with OpenMP (ignoring CSDs), the
compiler will still multi-stream concurrent loops in
science subroutines where possible. Calls to these
science subroutines are typically contained within
the high level loops in the driver routine where the
OpenMP directives and CSDs are located. Slight
modification of these loops allows simultaneous use
of OpenMP and CSDs. The performance impacts of
CSDs versus OpenMP on the Cray X1 are described
below.

For the Cray X1 with OpenMP disabled, the
number of MPI processes is equal to the number
of MSPs used. Four threads were used for all tests
with OpenMP enabled on the Cray X1. The curves
in the performance graphs presented here are all col-
ored by the total number of processors used in the
run. For the Cray X1, a processor refers to one MSP.
The clumps-per-process tuning parameter was var-
ied between 1 and 32 for all performance tests.

Figure 5 shows total run times for CLM3 on the
Cray X1 with both OpenMP and CSDs disabled for
1 to 128 MSPs. The number of MPI processes is
equal to the number of MSPs, except that MPI was
disabled for the 1 MSP case. For this test, streaming
across SSPs occurs only in concurrent loops within
science subroutines. The best performance is ob-

CLM3 Total Run Time on Cray X1 (30 Day T85 Offline Run with I/O)

1 2 4 8 16 32
Clumps per MPI Process

0

200

400

600

800

1000

1200

1400

T
im

e
(s

)

1 MSP (no MPI)

2 MSPs

4 MSPs

8 MSPs

16 MSPs

32 MSPs

64 MSPs

128 MSPs

No CSDs, No OpenMP

Figure 5: Curves show total run times for CLM3 on the
Cray X1 with OpenMP and CSDs both disabled for 1 to
128 MSPs.

tained when clumps per process is set to one, since
this setting maximizes the vector length. Scaling
beyond 16 MSPs is poor, but run time continues to
drop through 64 MSPs. Performance for 128 MSPs
is no better than for 64 MSPs.

Figure 6 shows total run times for CLM3 on the
Cray X1 with OpenMP disabled and CSDs enabled
for 1 to 128 MSPs. The number of MPI processes is
equal to the number of MSPs, except that MPI was
disabled for the 1 MSP case. For this test, stream-
ing across SSPs occurs at the high level loops in the
driver routine. The best performance is obtained
when clumps per process is set to four since this
setting maximizes the vector length for each of the
four SSPs. Scaling beyond 32 MSPs is poor, but
run time continues to drop through 64 MSPs. Per-
formance for 128 MSPs is just slightly worse than
for 64 MSPs.

Figure 7 shows total run times for CLM3 on the
Cray X1 with OpenMP enabled and CSDs disabled
for 4 to 256 MSPs. Four threads were used per MPI
process, and the number of MSPs shown is equal to
the product of the number of MPI processes and the
number of threads. MPI was disabled for the 4 MSP
case. For this test, streaming across SSPs occurs
only in concurrent loops within science subroutines.
The best performance is obtained when clumps per
process is set to four, since this setting maximizes
the vector length for each of the four shared memory
MSPs. Scaling beyond 64 MSPs is poor, but run
time continues to drop through 128 MSPs.

In all three cases, the best performance is ob-
tained when vector lengths are maximized. On aver-
age, performance is improved by 20% using clump-

6

CLM3 Total Run Time on Cray X1 (30 Day T85 Offline Run with I/O)

1 2 4 8 16 32
Clumps per MPI Process

0

200

400

600

800

1000

1200

1400

T
im

e
(s

)

1 MSP (no MPI)

2 MSPs

4 MSPs

8 MSPs

16 MSPs

32 MSPs

64 MSPs

128 MSPs

CSD Loops in Driver

Figure 6: Curves show total run times for CLM3 on the
Cray X1 using Cray Streaming Directives around high
level loops in the driver routine for 1 to 128 MSPs.

CLM3 Total Run Time on Cray X1 (30 Day T85 Offline Run with I/O)

1 2 4 8 16 32
Clumps per MPI Process

0

100

200

300

400

500

600

T
im

e
(s

)

4 MSPs

8 MSPs

16 MSPs

32 MSPs

64 MSPs

128 MSPs

256 MSPs

OpenMP Loops in Driver

Figure 7: Curves show total run times for CLM3 on
the Cray X1 using OpenMP directives around high level
loops in the driver routine for 4 to 256 MSPs. Four
threads were used per MPI process, so the number of
processors shown is equal to the product of the number
of MPI processes and the number of threads.

ing and enabling CSDs around high level loops to
explicitly utilize the four SSPs on each MSP. How-
ever, better scaling is obtained by using OpenMP
instead of CSDs for the same high level loops in the
driver routine. MPI performance and problem size
limit distributed memory scaling to 64 MSPs, but
adding shared memory processors via OpenMP im-
proves scaling to 128 MSPs (i.e., 32 MPI processes
and 4 OpenMP threads). It appears that the com-
piler does a good job of multi-streaming loops in
science subroutines (thereby keeping the SSPs suffi-
ciently busy). This fact, combined with the reduced
MPI communications, explains why using OpenMP
to parallelize high level loops results in better per-
formance beyond 8 MSPs.

In an effort to achieve additional performance
on the Cray X1, the high level loops in the driver
routine were slightly modified so that OpenMP and
Cray Streaming could be used simultaneously. The
code modification is shown in the listing in Figure 8.
For this case, the optimum number of clumps per
process is 16: four for the four OpenMP threads
times four for the four SSPs.

As shown in Figure 9, this change slightly im-
proves the performance of the OpenMP-only case
up through 64 MSPs. Beyond 64 MSPs, the addi-
tion of CSD loops within OpenMP loops does not
further improve model performance. The overall
performance improvement from using OpenMP and
CSDs simultaneously was smaller than expected be-
cause the vector lengths become too short (i.e., the
problem size is too small) and the overhead of MPI
communications limits further scaling. More impor-
tantly, this result is seen as confirmation that the
automatic streaming of concurrent loops within sci-
ence subroutines is very good. The SSPs are kept
busy most of the time.

Profiling experiments were performed to further
investigate performance characteristics of CLM3 on
the Cray X1. Table 1 contains a complete profile re-
port of CLM3 running on a single MSP with CSDs
enabled. This report provides a good overview of
the routines that consume the largest amount of
run time. The most costly routine is gettimeofday
which is used by the timing utilities. It is known
that gettimeofday is particularly expensive on the
Cray X1. Running with timers disabled improves
model performance by 10–15%. The second routine,
% rtor vv, appears to be a real-to-real vector mem-
ory copy routine. The third routine, canopyfluxes,
is the most expensive scientific subroutine. This rou-
tine is known to represent the majority of the cal-
culations in the present version of CLM, and it has

7

!$OMP PARALLEL DO PRIVATE (gnc,nc_beg, &
!$OMP & nc_end,nc,begg,endg,begl,endl, &
!$OMP & begc,endc,begp,endp)
do gnc = 1,nclumps/4
nc_beg = (gnc - 1) * 4 + 1
nc_end = min(nc_beg+3,nclumps)

!CSD$ PARALLEL DO PRIVATE (nc,begg, &
!CSD$ & endg,begl,endl,begc,endc, &
!CSD$ & begp,endp)
do nc=nc_beg,nc_end
call get_clump_bounds(nc, begg, endg, &

begl, endl, begc, endc, &
begp, endp)

.

.

.
call Hydrology1(begc, endc, &

begp, endp, &
filter(nc)%num_nolakec, &
filter(nc)%nolakec, &
filter(nc)%num_nolakep, &
filter(nc)%nolakep)

.

.

.
end do

!CSD$ END PARALLEL DO
end do
!$OMP END PARALLEL DO

Figure 8: Modified clump loop from driver providing
both OpenMP and Cray Streaming directives

CLM3 Total Run Time on Cray X1 (30 Day T85 Offline Run with I/O)

1 2 4 8 16 32 64 128 256
Total MSPs (MPI Processes x Number of Threads)

0

100

200

300

400

500

T
im

e
(s

)

CSD Loops (dashed)
OpenMP Loops (solid)
4 Clumps per process

OpenMP + CSD Loops (dotted)
16 Clumps per process

Figure 9: CLM3 total run time on the Cray X1 us-
ing CSD loops (dashed), OpenMP loops (solid), and
OpenMP with CSDs simultaneously (dotted).

Samp% | Cum.Samp% | Samp |SSP=0
|Function
|Caller

|--------------------------------------
| 100.0% | 100.0% | 59330 |Total
|--------------------------------------
| 10.7% | 10.7% | 6368 |gettimeofday
| 10.0% | 20.8% | 5944 |%__rtor_vv
| 7.1% | 27.9% | 4233 |canopyfluxes@canopyfluxesmod_
| 6.7% | 34.6% | 3966 |updateinput@rtmmod_
| 5.6% | 40.1% | 3293 |%__alog
| 5.3% | 45.4% | 3135 |areaovr_point@areamod_
| 5.0% | 50.4% | 2966 |pft2col@pft2colmod_
| 4.6% | 55.0% | 2725 |rtmriverflux@rtmmod_
| 4.3% | 59.3% | 2540 |mkmxovr@areamod_
| 2.7% | 62.0% | 1585 |soiltemperature@soiltemperatur
| 2.6% | 64.6% | 1543 |areaave@areamod_
| 2.4% | 67.0% | 1433 |phasechange@soiltemperaturemod
| 2.3% | 69.3% | 1368 |%__exp
| 1.9% | 71.2% | 1117 |biogeophysics2@biogeophysics2m
| 1.9% | 73.0% | 1115 |stomata@canopyfluxesmod_
| 1.8% | 74.9% | 1084 |frictionvelocity@frictionveloc
| 1.7% | 76.6% | 1019 |soilwater@soilhydrologymod_
| 1.7% | 78.2% | 990 |tridiagonal@tridiagonalmod_
| 1.6% | 79.9% | 970 |update_hbuf_field@histfilemod_
| 1.5% | 81.3% | 866 |soilthermprop@soiltemperaturem
| 1.4% | 82.7% | 822 |combinesnowlayers@snowhydrolog
| 1.2% | 83.9% | 723 |lseek
| 1.2% | 85.1% | 705 |__read
| 1.1% | 86.3% | 672 |__write
| 1.0% | 87.3% | 600 |update_hbuf@histfilemod_
| 0.6% | 87.9% | 383 |surfacerunoff@soilhydrologymod
| 0.6% | 88.6% | 372 |vec2xy@mapxy_
| 0.6% | 89.2% | 357 |%__atan
| 0.5% | 89.7% | 307 |driver_
| 0.5% | 90.2% | 293 |__atan
| 0.5% | 90.6% | 283 |areaovr@areamod_
| 0.5% | 91.1% | 276 |hydrology2@hydrology2mod_
| 0.5% | 91.6% | 269 |drainage@soilhydrologymod_
| 0.4% | 92.0% | 251 |atm_readdata@atmdrvmod_
| 0.4% | 92.4% | 248 |snowwater@snowhydrologymod_
| 0.4% | 92.8% | 224 |dividesnowlayers@snowhydrology
| 0.4% | 93.2% | 222 |makel2a@lnd2atmmod_
| 0.4% | 93.5% | 211 |__sin
| 0.3% | 93.8% | 200 |%__alog10
| 0.3% | 94.2% | 195 |biogeophysics1@biogeophysics1m
| 0.3% | 94.5% | 190 |baregroundfluxes@baregroundflu
| 0.3% | 94.7% | 149 |_ld_read
| 0.2% | 95.0% | 131 |initdecomp@decompmod_
| 0.2% | 95.2% | 130 |_stride_dv
| Truncated because cumulative % of Samp exceeds 95.
|======================================

Table 1: Profile for a 90 day T85 run using 1 MSP with
CSDs

been extensively optimized.
The updateinput, areaovr point, mkmxovr, and

areaave routines provide data exchange and inter-
polation functionality for the River Transport Model
(RTM), while rtmriverflux runs the RTM. The
data exchange and interpolation functions, which
have not been vectorized, are used repeatedly when
running CLM3 in offline mode; however, they are
called only during initialization when run in fully
coupled CCSM mode, so effort has not been spent
optimizing these routines. The pft2col routine ac-
cumulates data from the plant functional type (PFT)
sub-grid level to the column level.

8

Samp% | Cum.Samp% | Samp |SSP=0
|Function
|Caller

|--------------------------------------
| 100.0% | 100.0% | 82521 |Total
|--------------------------------------
| 13.8% | 13.8% | 11372 |gettimeofday
| 7.8% | 21.6% | 6459 |areaovr_point@areamod_
| 7.1% | 28.7% | 5822 |%__rtor_vv
| 6.4% | 35.1% | 5278 |mkmxovr@areamod_
| 5.3% | 40.4% | 4393 |updateinput@rtmmod_
| 5.3% | 45.7% | 4379 |canopyfluxes@canopyfluxesmod_
| 5.3% | 50.9% | 4334 |MPI_CRAY_gatherv
| 4.9% | 55.8% | 4023 |MPI_CRAY_bcast
| 3.9% | 59.7% | 3181 |rtmriverflux@rtmmod_
| 3.8% | 63.5% | 3176 |pft2col@pft2colmod_

Table 2: Top 10 routines for a 90 day T85 run using 2
MSPs with CSDs

Table 2 shows the top 10 routines for the same 90
day run using 2 MSPs with CSDs enabled. MPI is
used for communication, and already MPI Gatherv
and MPI Bcast are showing up at the 7th and 8th po-
sitions in the report. A small portion of this time is
attributable to synchronization (i.e., waiting for pro-
cesses to catch up to the point in the program where
the communication occurs); however, it is likely that
MPI performance could be improved. CLM3 has
very good load balancing, so synchronization should
take very little time. MPI Gatherv is used each time
step to generate a temperature diagnostic, and it is
used to accumulate data for monthly history output.
MPI Bcast is used to distribute atmospheric forcing
data read from disk by the master process to all pro-
cesses on a monthly basis.

As can be seen from Table 3, MPI Bcast and
MPI Gatherv are the second and third most expen-
sive routines when the model is run on 32 MSPs.
Only gettimeofday represents more time samples.
MPI Allgatherv, used after each run of RTM, ap-
pears at number 10. With 32 MPI processes, MPI
routines and interpolation for RTM dominate run
time. While some additional time may be lost to a
slightly larger load imbalance than when using two
processes, at 32 MPI processes communication time
appears to exceed calculation time.

4.2 Earth Simulator

Similar timing experiments were carried out on the
Earth Simulator (ES). Since the ES machine does
not use multi-streaming processors, only OpenMP
configurations were tested. One set of tests used
four OpenMP threads, while the other used eight
OpenMP threads. Like the timing tests on the Cray
X1, the clumps-per-process parameter was varied
from 1 to 32. The results from these timing tests

Samp% | Cum.Samp% | Samp |SSP=0
|Function
|Caller

|---------------------------------------
| 100.0% | 100.0% | 829295 |Total
|---------------------------------------
| 21.9% | 21.9% | 181986 |gettimeofday
| 15.2% | 37.1% | 125741 |MPI_CRAY_bcast
| 13.5% | 50.6% | 112289 |MPI_CRAY_gatherv
| 12.3% | 63.0% | 102158 |areaovr_point@areamod_
| 10.5% | 73.4% | 86886 |mkmxovr@areamod_
| 7.3% | 80.8% | 60740 |rtmriverflux@rtmmod_
| 4.0% | 84.8% | 33180 |areaave@areamod_
| 2.3% | 87.0% | 18867 |atm_readdata@atmdrvmod_
| 1.1% | 88.2% | 9518 |areaovr@areamod_
| 1.1% | 89.3% | 9149 |MPI_Allgatherv

Table 3: Top 10 routines for a 90 day T85 run using 32
MSPs with CSDs

CLM3 Total Run Time on Earth Simulator (30 Day T85 Offline Run with I/O)

1 2 4 8 16 32
Clumps per MPI Process

0

200

400

600

800

1000

T
im

e
(s

)

4 Processors
8 Processors
16 Processors
32 Processors
64 Processors

OpenMP Loops in Driver, 4 threads

Figure 10: Curves show total run times for CLM3 on the
Earth Simulator using OpenMP directives around high
level loops in the driver routine for 4 to 64 processors.
Four threads were used per MPI process, so the number
of processors shown is equal to the product of the number
of MPI processes and the number of threads.

are shown in Figures 10 and 11. The number of pro-
cessors shown is equal to the product of the number
of MPI processes and the number of threads.

As expected, choosing four clumps per process
provides the best performance for the four threads
case while eight clumps per process provides the
best performance for the eight threads case. On the
Earth Simulator, as on the Cray X1, the model scales
only to about 64 processors. Using eight OpenMP
threads yields slightly better performance than using
four threads.

4.3 Performance Comparison

Figure 12 shows a comparison of the best CLM3 to-
tal run times for the IBM Power4 using four OpenMP

9

CLM3 Total Run Time on Earth Simulator (30 Day T85 Offline Run with I/O)

1 2 4 8 16 32
Clumps per MPI Process

0

200

400

600

800

1000
T

im
e

(s
)

8 Processors
16 Processors
32 Processors
64 Processors

OpenMP Loops in Driver, 8 threads

Figure 11: Curves show total run times for CLM3 on the
Earth Simulator using OpenMP directives around high
level loops in the driver routine for 8 to 64 processors.
Eight threads were used per MPI process, so the number
of processors shown is equal to the product of the number
of MPI processes and the number of threads.

threads; the Earth Simulator using both four and
eight OpenMP threads; and the Cray X1 using CSDs,
OpenMP, and both CSDs and OpenMP simultane-
ously. The curve for the IBM Power4 shows very
good scaling to 32 processors (within a single node)
and reasonable scaling to 64 processors. The IBM
matches the best Earth Simulator performance and
beats the Cray X1 when using only CSDs at 64 pro-
cessors.

The shapes of the Earth Simulator and Cray X1
curves are similar, so the model scales in a similar

CLM3 Total Run Time (30 Day T85 Offline Run with I/O)

1 2 4 8 16 32 64 128 256
Total Processors/MSPs (MPI Processes x Number of Threads)

0

100

200

300

400

500

600

T
im

e
(s

)

IBM Power 4, 4 OpenMP threads, 4 clumps/process

Earth Simulator, 4 OpenMP threads, 4 clumps/process

Earth Simulator, 8 OpenMP threads, 8 clumps/process

Cray X1, CSD Loops, 4 clumps/process

Cray X1, 4 OpenMP threads, 4 clumps/process

Cray X1, 4 OpenMP threads plus CSD Loops,

16 clumps/process

Figure 12: Curves show performance of the Community
Land Model (CLM3) run in offline mode on the IBM
Power4, the Earth Simulator, and the Cray X1.

fashion on both machines. However, the Cray X1
performance numbers are usually better than those
from the Earth Simulator. When using only CSDs
around the driver loops, the Cray X1 beats the
Earth Simulator out to 32 processors. At 64 pro-
cessors, the Earth Simulator does slightly better.
On the other hand, when OpenMP is used on the
Cray X1 (with or without CSDs), it always beats the
Earth Simulator on a per processor basis. Moreover,
at low processor counts (16 or fewer), the model per-
forms significantly better on the Cray X1 than on the
other two platforms.

5 Conclusions

Vectorization should be considered during all model
development to ensure performance portability across
computer platforms. Internal data structures can of-
ten be designed to meet the goals of researchers and
still provide good vector and scalar performance.
Writing loops so that they will vectorize is worth
the up-front effort since it assures good performance
on a wide variety of systems. Even today’s personal
computers have small vector units which can be har-
nessed for high performance computational science.

The vector performance of the Community Land
Model is reasonable even when run in offline mode.
When coupled to the Community Atmosphere Model
and the Community Climate System Model, better
performance is expected since atmospheric data are
passed directly to the land model instead of being
read from disk and broadcast to all MPI processes.
At 64 processors, the performance of the model is
similar on the IBM Power4, the Earth Simulator,
and the Cray X1. However, the Cray X1 offers the
best performance of all three platforms tested from
4 to 64 processors when OpenMP is used. Moreover,
at low processor counts (16 or fewer), the model per-
forms significantly better on the Cray X1 than on the
other platforms. When run with CCSM, fewer pro-
cessors will need to be allocated to the land model.

Vectorizing the Community Land Model required
significant changes to the internal data structures
and every science subroutine in the model. The pro-
cess of rewriting the code took about six months
to complete, and the planning and related devel-
opment activities impacted model developers for an
entire year. However, the resulting model code per-
forms better on both vector and scalar architectures.
These performance improvements will result in more
and better research into land surface processes and
feedbacks as access to vector platforms widens.

10

Acknowledgments

This research used resources of the Center for Com-
putational Sciences at Oak Ridge National Labora-
tory which is supported by the Office of Science of
the U.S. Department of Energy under Contract No.
DE–AC05–00OR22725. Additional resources were
provided by the National Center for Atmospheric
Research (NCAR) which is sponsored by the Na-
tional Science Foundation (NSF), the Central Re-
search Institute of Electric Power Industry (CRIEPI)
in Japan, Cray Inc., and NEC Corporation.

References

Bonan, G. B., Oleson, K. W., Vertenstein, M., Levis,
S., Zeng, X., Dai, Y., Dickinson, R. E., and
Yang, Z.-L. (2002). The land surface climatol-
ogy of the Community Land Model coupled to
the NCAR Community Climate Model. J. Cli-
mate, 15:3123–3149.

Dai, Y., Zeng, X., Dickinson, R. E., Baker, I., Bo-
nan, G. B., Bosilovich, M. G., Denning, A. S.,
Dirmeyer, P. A., Houser, P. R., Niu, G., Ole-
son, K. W., Schlosser, C. A., and Yang, Z.-
L. (2003). The Common Land Model. Bul-
letin of the American Meteorological Society,
84(8):1013–1023.

Kiehl, J. T. and Gent, P. R. (2004). The Community
Climate System Model, version two. J. Climate.
accepted for publication.

Oleson, K., Dai, Y., Bonan, G., Bosilovich, M., Dick-
inson, R., Dirmeyer, P., Hoffman, F., Houser,
P., Levis, S., Niu, G.-Y., Thornton, P., Verten-
stein, M., Yang, Z.-L., and Zeng, X. (2004).
Technical Description of the Community Land
Model (CLM). Technical Note NCAR/TN-
461+STR, National Center for Atmospheric Re-
search.

White, J. B. (2003). An optimization experiment
with the Community Land Model on the Cray
X1. In Proceedings of the 2003 Cray Users
Group (CUG) Meeting, Columbus, Ohio.

11

http://ams.allenpress.com/amsonline/?request=get-abstract&issn=1520-0477&volume=084&issue=08&page=1013

	Introduction
	Data Structures
	Hierarchy of Grid Scales
	Decomposition and Clumps
	Filters

	Code Reorganization
	Vector Performance
	Cray X1
	Earth Simulator
	Performance Comparison

	Conclusions

