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Next-Generation Ecosystem Experiments (NGEE Arctic)
Representativeness and Scaling

Patterned Arctic Landscape. Thousands 
of square miles in the Arctic are covered by 
networks of polygons that fill with water as 
snow melts early in the year. Slight variations 
in topography affect how water flows across 
the land surface and, in turn, how vegetation 
dynamics and carbon emissions respond to 
changes in soil water distribution. [Oak Ridge 
National Laboratory]

Characterized by vast amounts of carbon stored in permafrost, 
Arctic tundra is rapidly evolving as permafrost degrades in 
response to a changing climate. The mechanisms responsible 

for this system-wide reorganization have been unpredictable and 
difficult to isolate because they are initiated at very fine spatial scales, 
and because of the large number of interactions among the individual 
system components. To address this challenge, the Terrestrial Eco-
system Science (TES) program within the Department of Energy’s 
(DOE) Office of Biological and Environmental Research (BER) is 
supporting a next-generation ecosystem experiment (NGEE).

Overarching NGEE Arctic science question: How does thawing of 
permafrost—and the associated changes in landscape evolution, 
hydrology, soil biogeo chemical processes, and plant community 
succession—affect feedbacks to the climate system?

The goal of the NGEE concept is to improve the representation of 
critical environmental processes in Earth system models (ESMs) by 
focusing on systems that are globally important, climatically sensi-
tive, and understudied or inadequately represented in ESMs. In this 
approach, modeling and process research are closely and iteratively 
connected so that model structure and needs are considered in the 
development of process studies whose outcomes in turn are designed 
to directly inform, challenge, and improve models. Ultimately, the 
NGEE Arctic project will develop a process-rich ecosystem model, 
extending from the bedrock to the top of the vegetative canopy, in 
which the evolution of Arctic ecosystems in a changing climate can 
be modeled at the scale of a high-resolution ESM grid.

Integration Across Scales
Geomorphological features—including thaw lakes, drained thaw 
lake basins, and ice-rich polygonal ground—provide the organizing 

framework for integrating process studies and observations from the 
pore or core scale (micron to tens of centimeters) to plot (meters 
to tens of meters) and landscape (kilometers) scales. Within these 
discrete geomorphological units, mechanistic studies in the field and 
laboratory are targeting four critical and interrelated components—
water, nitrogen, carbon, and energy dynamics—that determine 
whether the Arctic is, or in the future will become, a negative or 
positive feedback to anthropogenically forced climate change. Multi-
scale research activities organized around these components include 
hydrology and geomorphology, vegetation dynamics, biogeochemis-
try, and energy transfer processes.

Hydrology and Geomorphology research activities are focused on 
identifying and quantifying the  coupled hydrogeomorphic processes 
being driven by permafrost thaw and degradation. The resulting 
variations in microtopography affect drainage networks, redistribut-
ing soil moisture at the local scale and across the landscape. This, in 
turn, drives changes in plant ecosystem processes and soil biogeo-
chemistry that affect the amount and ratio of carbon dioxide (CO₂) 
and methane (CH₄) produced in the subsurface through microbial 
decomposition of soil carbon.

Advancing predictive understanding of the structure and function 
of Arctic terrestrial ecosystems in response to climate change

 
Landscapes in Transition.  
A mechanistic understanding of what controls the rates, scales, and 
feedbacks of permafrost degradation is needed for system-scale pre-
diction of permafrost dynamics in response to warming. NGEE Arctic 
research activities are designed to identify and quantify the mechanisms 
underlying proc esses that control carbon and energy transfer in the Arctic 
biosphere, as well as how those processes play out in a changing Arctic 
landscape. [Lawrence Berkeley National Laboratory]

Next-Generation Ecosystem Experiment: 
Arctic Landscapes

ngee.ornl.gov

The Next-Generation Ecosystem Experiments (NGEE Arctic) project is supported by the Office of Biological and
Environmental Research in the DOE Office of Science.



Quantitative Sampling Network Design

I Resource and logistical constraints limit the frequency and
extent of observations, necessitating the development of a
systematic sampling strategy that objectively represents
environmental variability at the desired spatial scale.

I Required is a methodology that provides a quantitative
framework for informing site selection and determining the
representativeness of measurements.

I Multivariate spatiotemporal clustering (MSTC) was applied at
the landscape scale (4 km2) for the State of Alaska to
demonstrate its utility for representativeness and scaling.

I An extension of the method applied by Hargrove and Hoffman
for design of National Science Foundation’s (NSF’s) National
Ecological Observatory Network (NEON) domains.



Data Layers

Table: 37 variables averaged for 2000–2009 and 2090–2099

Description Number/Name Units Source

Monthly mean air temperature 12 ◦C GCM
Monthly mean precipitation 12 mm GCM

Day of freeze
mean day of year GCM

standard deviation days

Day of thaw
mean day of year GCM

standard deviation days

Length of growing season
mean days GCM

standard deviation days
Maximum active layer thickness 1 m GIPL
Warming effect of snow 1 ◦C GIPL
Mean annual ground temperature
at bottom of active layer

1 ◦C GIPL

Mean annual ground surface tem-
perature

1 ◦C GIPL

Thermal offset 1 ◦C GIPL
Limnicity 1 % NHD
Elevation 1 m SRTM



10 Alaska Ecoregions (2000–2009)

1000 km

Each ecoregion is a different random color. Blue filled circles mark
locations most representative of mean conditions of each region.



10 Alaska Ecoregions (2090–2099)

1000 km

Each ecoregion is a different random color. Blue filled circles mark
locations most representative of mean conditions of each region.



10 Alaska Ecoregions, Present and Future

1000 km 1000 km

2000–2009 2090–2099

Since the random colors are the same in both maps, a change in
color represents an environmental change between the present and
the future.
At this level of division, the conditions in the large boreal forest
become compressed onto the Brooks Range and the conditions on
the Seward Peninsula “migrate” to the North Slope.



20 Alaska Ecoregions, Present and Future

1000 km 1000 km

2000–2009 2090–2099

Since the random colors are the same in both maps, a change in
color represents an environmental change between the present and
the future.
At this level of division, the two primary regions of the Seward
Peninsula and that of the northern boreal forest replace the two
regions on the North Slope almost entirely.



50 and 100 Alaska Ecoregions, Present

1000 km 1000 km

k = 50, 2000–2009 k = 100, 2000–2009

Since the random colors are the same in both maps, a change in
color represents an environmental change between the present and
the future.
At high levels of division, some regions vanish between the present
and future while other region representing new combinations of
environmental conditions come into existence.



NGEE Arctic Site Representativeness

I This representativeness analysis uses the standardized
n-dimensional data space formed from all input data layers.

I In this data space, the Euclidean distance between a sampling
location (like Barrow) and every other point is calculated.

I These data space distances are then used to generate
grayscale maps showing the similarity, or lack thereof, of every
location to the sampling location.

I In the subsequent maps, white areas are well represented by
the sampling location or network, while dark and black areas
as poorly represented by the sampling location or network.

I This analysis assumes that the climate surrogates maintain
their predictive power and that no significant biological
adaptation occurs in the future.



Present Representativeness of Barrow or “Barrow-ness”

1000 km

Light-colored regions are well represented and dark-colored regions
are poorly represented by the sampling location listed in red.



Present vs. Future Barrow-ness

1000 km 1000 km

2000–2009 2090–2099

As environmental conditions change, due primarily to increasing
temperatures, climate gradients increase and the representativeness
of Barrow will be diminished in the future.



Council and Prudhoe Bay Representativeness

1000 km 1000 km

Council Prudhoe Bay

Representativeness analysis was performed for sites at Barrow,
Council, Atqasuk, Ivotuk, Kougarok, Prudhoe Bay, Toolik Lake,
and Fairbanks.



Network Representativeness: Barrow + Council

1000 km



Network Representativeness: All 8 Sites

1000 km



State Space Dissimilarity: 8 Sites, Present (2000–2009)

Table: Site state space distances for the present (2000–2009) with DEM

Toolik Prudhoe
Sites Council Atqasuk Ivotuk Lake Kougarok Bay Fairbanks

Barrow 9.13 4.53 5.90 5.87 7.98 3.57 12.16
Council 8.69 6.37 7.00 2.28 8.15 5.05

Atqasuk 5.18 5.23 7.79 1.74 10.66
Ivotuk 1.81 5.83 4.48 7.90

Toolik Lake 6.47 4.65 8.70
Kougarok 7.25 5.57

Prudhoe Bay 10.38



State Space Dissimilarity: 8 Sites, Future (2090–2099)

Table: Site state space distances for the future (2090–2099) with DEM

Toolik Prudhoe
Sites Council Atqasuk Ivotuk Lake Kougarok Bay Fairbanks

Barrow 8.87 4.89 6.88 6.94 8.04 4.18 11.95
Council 8.82 6.93 7.74 2.43 8.24 5.66

Atqasuk 5.86 5.84 8.15 2.30 10.16
Ivotuk 2.01 7.27 4.75 7.51

Toolik Lake 7.81 5.00 8.33
Kougarok 7.89 6.42

Prudhoe Bay 9.81



State Space Dissimilarity: 8 Sites, Present and Future

Table: Site state space distances between the present (2000–2009) and
the future (2090–2099) with DEM

Future (2090–2099)
Toolik Prudhoe

Sites Barrow Council Atqasuk Ivotuk Lake Kougarok Bay Fairbanks
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) Barrow 3.31 9.67 4.63 6.05 5.75 9.02 3.69 11.67
Council 8.38 1.65 8.10 5.91 6.87 3.10 7.45 5.38

Atqasuk 6.01 9.33 2.42 5.46 5.26 8.97 2.63 10.13
Ivotuk 7.06 7.17 5.83 1.53 2.05 7.25 4.87 7.40

Toolik Lake 7.19 7.67 6.07 2.48 1.25 7.70 5.23 8.16
Kougarok 7.29 3.05 6.92 5.57 6.31 2.51 6.54 5.75

Prudhoe Bay 5.29 8.80 3.07 4.75 4.69 8.48 1.94 9.81
Fairbanks 12.02 5.49 10.36 7.83 8.74 6.24 10.10 1.96



Representativeness: A Quantitative Approach for Scaling

I MSTC provides a quantitative framework for stratifying
sampling domains, informing site selection, and determining
representativeness of measurements.

I Representativeness analysis provides a systematic approach for
up-scaling point measurements to larger domains.

I Methodology is independent of resolution, thus can be applied
from site/plot scale to landscape/climate scale.

I It can be extended to include finer spatiotemporal scales,
more geophysical characteristics, and remote sensing data.

I Paper describing the methodology is in press:

Hoffman, F. M., J. Kumar, R. T. Mills, and W. W. Hargrove
(2013) “Representativeness-Based Sampling Network Design for
the State of Alaska.” Landscape Ecol., in press.
doi:10.1007/s10980-013-9902-0.

http://dx.doi.org/10.1007/s10980-013-9902-0


Outline

Data Mining for Climate Change Model Intercomparison

Sampling Domain Representativeness

Developing Phenoregion Maps Using Remotely Sensed Imagery



The USDA Forest Service, NASA Stennis Space Center, and DOE
Oak Ridge National Laboratory are creating a system to monitor
threats to U.S. forests and wildlands at two different scales:

I Tier 1: Strategic — The ForWarn System that routinely
monitors wide areas at coarser resolution, repeated frequently
— a change detection system to produce alerts or warnings
for particular locations may be of interest

I Tier 2: Tactical — Finer resolution airborne overflights and
ground inspections of areas of potential interest — Aerial
Detection Survey (ADS) monitoring to determine if such
warnings become alarms

Tier 2 is largely in place, but Tier 1 is needed to optimally direct
its labor-intensive efforts and discover new threats sooner.



Design Plan for the ForWarn Early Warning System



ForWarn is forest change recognition and tracking system that uses
high-frequency, moderate resolution satellite data to provide near real-time
forest change maps for the continental United States that are updated every
eight days. Maps and data products are available in the Forest Change
Assessment Viewer at http://forwarn.forestthreats.org/fcav/

http://forwarn.forestthreats.org/fcav/


Clustering MODIS NDVI into Phenoregions

I Hoffman and Hargrove previously used k-means clustering to
detect brine scars from hyperspectral data (Hoffman, 2004)
and to classify phenologies from monthly climatology and 17
years of 8 km NDVI from AVHRR (White et al., 2005).

I This data mining approach, using high performance
computing, was applied to the entire body of the high
resolution MODIS NDVI record for the continental U.S.

I >80B NDVI values, consisting of ∼146.4M cells for the
CONUS at 250 m resolution with 46 maps per year for
12 years (2000–2011), analyzed using k-means clustering.

I The annual traces of NDVI for every year and map cell are
combined into one 323 GB single-precision binary data set of
46-dimensional observation vectors.

I Clustering yields 12 maps in which each cell is classified into
one of k phenoclasses, and phenoregions form representative
prototype annual NDVI traces.



50 Phenoregions for year 2011 (Random Colors)



50 Phenoregion Prototypes (Random Colors)

N
D

V
I

Phenology Centroid Prototypes (phendump.2000-2011, k = 50)

Cluster 31 Cluster 40 Cluster 28 Cluster 25 Cluster 10 Cluster 3 Cluster 2 Cluster 7 Cluster 22 Cluster 6

Cluster 4 Cluster 42 Cluster 5 Cluster 13 Cluster 41 Cluster 39 Cluster 15 Cluster 48 Cluster 21 Cluster 30

Cluster 11 Cluster 49 Cluster 46 Cluster 32 Cluster 45 Cluster 8 Cluster 47 Cluster 16 Cluster 26 Cluster 38

Cluster 27 Cluster 35 Cluster 29 Cluster 14 Cluster 20 Cluster 50 Cluster 37 Cluster 33 Cluster 12 Cluster 18

Cluster 36 Cluster 34 Cluster 24 Cluster 44 Cluster 1 Cluster 23 Cluster 43 Cluster 19 Cluster 9 Cluster 17

1 of 1

day of year



50 Phenoregions Persistence (Random Colors)



50 Phenoregions Mode (Random Colors)



50 Phenoregions Max Mode (Random Colors)



50 Phenoregions Max Mode (Similarity Colors)



50 Phenoregions Max Mode (Similarity Colors Legend)
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Phenoregions Clearinghouse



AGU Fall Meeting Session

IN006. Big Data in the Geosciences: New Analytics Methods and Parallel
Algorithms

Co-conveners: Jitendra Kumar (ORNL), Robert Jacob (ANL), Don Middleton
(NCAR), and Forrest Hoffman (ORNL)

Confirmed Invited Presenters:

I Gary Geernaert (U.S. Dept. of Energy)

I Matt Hancher (Google Earth Engine)

I Jeff Daily (Pacific Northwest National Laboratory)

I William Hargrove (USDA Forest Service)

Earth and space science data are increasingly large and complex, often representing
long time series or high resolution remote sensing, making such data difficult to
analyze, visualize, interpret, and understand. The proliferation of heterogeneous,
multi-disciplinary observational and model data have rendered traditional means of
analysis and integration ineffective. This session focuses on development and
applications of data analytics (statistical, data mining, machine learning, etc.)
approaches and software for the analysis, assimilation, and synthesis of large or long
time series Earth science data that support integration and discovery in climatology,
hydrology, geology, ecology, seismology, and related disciplines.

Abstract submissions are due August 6.
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