Multivariate Spatio-Temporal Clustering: A Framework for Integrating Disparate Data to Understand Network Representativeness and Scale Up Sparse Ecosystem Measurements

Forrest M. Hoffman^{1,2}, Jitendra Kumar¹, Damian Maddalena³, Zachary Langford⁴, and William W. Hargrove⁵

¹Oak Ridge National Laboratory, ²University of California–Irvine, ³University of North Carolina–Wilmington, ⁴University of Tennessee–Knoxville, and ⁵USDA Forest Service

December 18, 2014

Next-Generation Ecosystem Experiments (NGEE Arctic) http://ngee.ornl.gov/

The Next-Generation Ecosystem Experiments (NGEE Arctic) project is supported by the Office of Biological and Environmental Research in the DOE Office of Science.

Quantitative Sampling Network Design

- Resource and logistical constraints limit the frequency and extent of observations, necessitating the development of a systematic sampling strategy that objectively represents environmental variability at the desired spatial scale.
- Required is a methodology that provides a quantitative framework for informing site selection and determining the representativeness of measurements.
- Multivariate spatiotemporal clustering (MSTC) was applied at the landscape scale (4 km²) for the State of Alaska to demonstrate its utility for representativeness and scaling.
- An extension of the method applied by Hargrove and Hoffman for design of National Science Foundation's (NSF's) National Ecological Observatory Network (NEON) domains.

Table: 37 characteristics averaged for the present (2000–2009) and the future (2090–2099).

Description	Number/Name	Units	Source
Monthly mean air temperature	12	°C	GCM
Monthly mean precipitation	12	mm	GCM
Day of froozo	mean	day of year	GCM
Day of freeze	standard deviation	days	
Day of thaw	mean	day of year	GCM
Day of thaw	standard deviation	days	
Length of growing season	mean	days	GCM
Eelight of growing season	standard deviation	days	
Maximum active layer thickness	1	m	GIPL
Warming effect of snow	1	°C	GIPL
Mean annual ground temperature	1	°C	GIPL
at bottom of active layer	_	-	
Mean annual ground surface tem-	1	°C	GIPL
perature Thomas I affect	1	0.0	CIDI
I nermal offset	1	°C	GIPL
Limnicity	1	%	NHD
Elevation	1	m	SRTM

10 Alaska Ecoregions, Present and Future

Since the random colors are the same in both maps, a change in color represents an environmental change between the present and the future.

At this level of division, the conditions in the large boreal forest become compressed onto the Brooks Range and the conditions on the Seward Peninsula "migrate" to the North Slope.

20 Alaska Ecoregions, Present and Future

Since the random colors are the same in both maps, a change in color represents an environmental change between the present and the future.

At this level of division, the two primary regions of the Seward Peninsula and that of the northern boreal forest replace the two regions on the North Slope almost entirely.

NGEE Arctic Site Representativeness

- This representativeness analysis uses the standardized n-dimensional data space formed from all input data layers.
- In this data space, the Euclidean distance between a sampling location (like Barrow) and every other point is calculated.
- These data space distances are then used to generate grayscale maps showing the similarity, or lack thereof, of every location to the sampling location.
- In the subsequent maps, white areas are well represented by the sampling location or network, while dark and black areas as poorly represented by the sampling location or network.
- This analysis assumes that the climate surrogates maintain their predictive power and that no significant biological adaptation occurs in the future.

Present Representativeness of Barrow or "Barrow-ness"

⁽Hoffman et al., 2013)

Light-colored regions are well represented and dark-colored regions are poorly represented by the sampling location listed in **red**.

Network Representativeness: Barrow + Council

⁽Hoffman et al., 2013)

Light-colored regions are well represented and dark-colored regions are poorly represented by the sampling location listed in **red**.

Table: Site state space dissimilarities for the present (2000–2009).

Sites	Council	Atqasuk	lvotuk	Toolik Lake	Kougarok	Prudhoe Bay	Fairbanks
Barrow	9.13	4.53	5.90	5.87	7.98	3.57	12.16
Council		8.69	6.37	7.00	2.28	8.15	5.05
Atqasuk			5.18	5.23	7.79	1.74	10.66
lvotuk				1.81	5.83	4.48	7.90
Toolik Lake					6.47	4.65	8.70
Kougarok						7.25	5.57
Prudhoe Bay							10.38

Table: Site state space dissimilarities between the present (2000–2009) and the future (2090–2099).

					Future	(2090-	-2099)		
						Toolik		Prudho	e
	Sites	Barrow	Council	Atqasuk	lvotuk	Lake	Kougarok	Bay	Fairbanks
60	Barrow	3.31	9.67	4.63	6.05	5.75	9.02	3.69	11.67
õ	Council	8.38	1.65	8.10	5.91	6.87	3.10	7.45	5.38
Ľ	Atqasuk	6.01	9.33	2.42	5.46	5.26	8.97	2.63	10.13
00	lvotuk	7.06	7.17	5.83	1.53	2.05	7.25	4.87	7.40
C	Toolik Lake	7.19	7.67	6.07	2.48	1.25	7.70	5.23	8.16
nt	Kougarok	7.29	3.05	6.92	5.57	6.31	2.51	6.54	5.75
ese	Prudhoe Bay	5.29	8.80	3.07	4.75	4.69	8.48	1.94	9.81
đ	Fairbanks	12.02	5.49	10.36	7.83	8.74	6.24	10.10	1.96

Representativeness: A Quantitative Approach for Scaling

- MSTC provides a quantitative framework for stratifying sampling domains, informing site selection, and determining representativeness of measurements.
- Representativeness analysis provides a systematic approach for up-scaling point measurements to larger domains.

RESEARCH ARTICLE	
aboutteen marieue	
Representativeness-based sampli for the State of Alaska	ng network design
Forrest M. Hoffman - Jitendra Kumar - Richard T. Mills - William W. Hargrove	
Received: 13 February 2013/Accepted: 31 May 2013/Published 0 The Author(s) 2013. This article is published with open acces	i online: 20 June 2013 n at Springerlak.com
Address1 Because and Inglividus constraints limits the fragmenty and constraints all horizon- tions, percisality in the Artis, necessitating the deductions of a straint strainty arguing year background of a strainty of the artist constraints and a strainty of the artist constraints and a strainty for arguing the artist and a strainty of the artist strainty of the artist and a strainty for argu- tering strainty of the artist and a strainty for argu- tering strainty of the artist and a strainty for a strainty of the artist and a strainty for a strainty and a strainty of the artist and a strainty for a strainty and a strainty of the artist and a strainty of the artist strainty of the artist and a strainty	present (2003)-2007 and fame (2006)-2007 user professel, dessets) for combinations of 17 there- metics are alumbated and how how may define the terms. Depresentation sampling locations are ident- fames. Depresentations and the second second second extentions metric was developed, and presentativeness may be eight actions using the locations were produced. This stretce was and this analysis provides model angular in famous the optical angular garding strengths. The second se
F. M. Helfman (El) Computer Science & Mathematics Division, Climate Computer Science Institute (CCSI), Ook Ridge National Laboratory, Ook Ridge, TN, USA e-mail: Formet#-Climatemodeling.org	ndrvadiat measurement campaigns. Keywords: Ecoregions - Representativeness - Network design - Chaster analysis - Alaska - Permatrost
r. M. INTERNA - J. NUMER - R. T. Milli Environmental Sciences Division, Climate Change Science Institute (CCSB, Ouk Bidge National Laboratory, Oak Ridge, TN, USA e mill Jianumet Unimerenching.org	
R.T. Mile	Introduction
e sur removementes	The Arctic contains vast amounts of frozen water in

W. W. Happene Batters Forest Environmental Threat Assessment Center, ISDA Forest Sorvice, Southern Research Station, Merville, NC, USA - onthe Barryl probability org The Arctic contains wast amounts of frozen water in the form of sea ice, srow, glaciers, and permafrest. Extended areas of permafrest in the Arctic contain soil organic carbon that is equivalent to twice the size of the atmospheric carbon pool, and this large stabilized Hoffman, F. M., J. Kumar, R. T. Mills, and W. W. Hargrove (2013), "Representativeness-Based Sampling Network Design for the State of Alaska." *Landscape Ecol.*, 28(8):1567–1586. doi:10.1007/s10980-013-9902-0.

Received US-IALE's 2014 Outstanding Paper in Landscape Ecology Award!

Barrow Environmental Observatory (BEO)

Representativeness map for vegetation sampling points in A, B, C, and D sampling area with phenology (left) and without (right), based on WorldView2 satellite images for the year 2010 and LiDAR data.

See Zach Langford's poster on Thursday morning: B41I-0166 in the Moscone West Poster Hall

Barrow Environmental Observatory (BEO)

(Langford et al., in prep)

Example plant functional type (PFT) distributions scaled up from vegetation sampling locations.

See Zach Langford's poster on Thursday morning: B41I-0166 in the Moscone West Poster Hall

ForestGEO Network Global Representativeness

Map illustrating ForestGEO network representation of 17 bioclimatic, edaphic, and topographic conditions globally. Light-colored regions are well represented and dark-colored regions are poorly represented by the ForestGEO sampling network. Stippling covers non-forest areas.

See Damian Maddalena's poster on Friday morning: B51B-0029 in the Moscone West Poster Hall

Triple-Network Global Representativeness

Map indicates which sampling network offers the most representative coverage at any location. Every location is made up of a combination of three primary colors from Fluxnet (red), ForestGEO (green), and RAINFOR (blue).

See Damian Maddalena's poster on Friday morning: B51B-0029 in the Moscone West Poster Hall

What is a Benchmark?

- A Benchmark is a quantitative test of model function achieved through comparison of model results with observational data.
- Acceptable performance on benchmarks is a necessary but not sufficient condition for a fully functioning model.
- Functional benchmarks offer tests of model responses to forcings and yield insights into ecosystem processes.
- Effective benchmarks must draw upon a broad set of independent observations to evaluate model performance on multiple temporal and spatial scales.

Models often fail to capture the amplitude of the seasonal cycle of atmospheric CO_2 .

Models may reproduce correct responses over only a limited range of forcing variables.

(Randerson et al., 2009)

- We co-organized inaugural meeting and ~45 researchers participated from the United States, Canada, the United Kingdom, the Netherlands, France, Germany, Switzerland, China, Japan, and Australia.
- ILAMB Goals: Develop internationally accepted benchmarks for model performance, advocate for design of open-source software system, and strengthen linkages between experimental, monitoring, remote sensing, and climate modeling communities. *Initial focus on CMIP5 models.*
- Provides methodology for model-data comparison and baseline standard for performance of land model process representations (Luo et al., 2012).

General Benchmarking Procedure

(Luo et al., 2012)

Example Benchmark Score Sheet from C-LAMP

				M	odels	s —			>
Metric	Metric components	Uncertainty of obs.	Scaling mismatch	Total score	Sub-score	CASA'		CN	
LAI	Matching MODIS observations			15.0		13.5		12.0	
	· Phase (assessed using the month of maximum LAI)	Low	Low		6.0		5.1		4.2
	 Maximum (derived separately for major biome classes) 	Moderate	Low		5.0		4.6		4.3
	 Mean (derived separately for major biome classes) 	Moderate	Low		4.0		3.8		3.5
NPP	Comparisons with field observations and satellite products			10.0		8.0		8.2	
	 Matching EMDI Net Primary Production observations 	High	High		2.0		1.5		1.6
	· EMDI comparison, normalized by precipitation	Moderate	Moderate		4.0		3.0		3.4
	 Correlation with MODIS (r²) 	High	Low		2.0		1.6		1.4
	 Latitudinal profile comparison with MODIS (r²) 	High	Low		2.0		1.9		1.8
CO2 annual cycle	Matching phase and amplitude at Globalview flash sites			15.0		10.4		7.7	
	• 60°–90°N	Low	Low		6.0		4.1		2.8
	• 30°-60°N	Low	Low		6.0		4.2		3.2
	• 0°-30°N	Moderate	Low		3.0		2.1		1.7
Energy & CO ₂ fluxes	Matching eddy covariance monthly mean observations			30.0		17.2		16.6	
	 Net ecosystem exchange 	Low	High		6.0		2.5		2.1
	· Gross primary production	Moderate	Moderate		6.0		3.4		3.5
	Latent heat	Low	Moderate		9.0		6.4		6.4
	Sensible heat	Low	Moderate		9.0		4.9		4.6
Transient dynamics	Evaluating model processes that regulate carbon exchange on decadal to century timescales			30.0		16.8		13.8	
	· Aboveground live biomass within the Amazon Basin	Moderate	Moderate		10.0		5.3		5.0
	· Sensitivity of NPP to elevated levels of CO2: comparison	Low	Moderate		10.0		7.9		4.1
	to temperate forest FACE sites								
	 Interannual variability of global carbon fluxes: comparison with TRANSCOM 	High	Low		5.0		3.6		3.0
	 Regional and global fire emissions: comparison to GFEDv2 	High	Low		5.0		0.0		1.7
			Total	100.0		65.0		20.2	

(Randerson et al., 2009)

Biogeochemistry-Climate Feedbacks Scientific Focus Area

ILAMB Prototype Diagnostics System

An initial ILAMB prototype has been developed by Mingquan Mu at UCI.

Current variables:

Aboveground live biomass (North America FIA, tropical Saatchi et al.), Burned area (GFED3), CO₂ (NOAA GMD, Mauna Loa), Global net land flux (GCP), Gross primary production (Fluxnet-MTE), Leaf area index (AVHRR, MODIS), Net ecosystem exchange (Fluxnet), Respiration (Fluxnet), Soil C (HWSD, NCSCDv2), Evapotranspiration (LandFlux, GLEAM, MODIS), Latent heat (Fluxnet-MTE), Soil moisture (ESA), Terrestrial water storage change (GRACE), Precipitation (GPCP2), Albedo (MODIS, CERES), Surface up/down SW/LW radiation (CERES, WRMC.BSRN), Sensible heat (Fluxnet), Surface air temperature (CRU).

Graphics and scoring systems:

- Annual mean, Bias, RMSE, seasonal cycle, spatial distribution, interannual coeff. of variation and variability, long-term trend scores
- Global maps, variable to variable, and time series comparisons

Software:

Freely distributed, designed to be user friendly and to enable easy addition of new variables (Mu, Hoffman, Riley, Koven, Lawrence, Randerson)

ILAMB Prototype Layout: Global Variables

Global Variables (Info)

	MeanModel	bcc-csm1-1-m	BNU-ESM	CanESM2	CESM1-BGC	GFDL-ESM2G	HadGEM
Aboveground Live Biomass	0.88	-	0.14	0.81	0.68	0.81	0.86
Burned Area	0.41	-	-	-	0.37	-	-
Carbon Dioxide	0.88	-	0.53	0.94	0.86	0.96	-
<u>Global Net Land</u> <u>Flux</u>	0.25	-	0.25	0.32	0.32	0.49	0.63
<u>Gross Primary</u> <u>Production</u>	0.80	0.74	0.74	0.74	0.77	0.72	0.75
Leaf Area Index	0.59	0.64	0.30	0.78	0.53	0.33	0.53
<u>Net Ecosystem</u> <u>Exchange</u>	0.36	0.29	0.19	0.16	0.28	0.64	0.28
<u>Ecosystem</u> <u>Respiration</u>	0.78	0.71	0.78	0.75	0.74	0.70	0.77
Soil Carbon	0.71	-	0.35	0.73	0.31	0.74	0.63
Summary	0.63	0.59	0.41	0.65	0.54	0.67	0.64
Evapotranspiration	0.75	0.83	0.74	0.82	0.73	0.76	0.77
Latent Heat	0.77	0.79	0.71	0.80	0.71	0.72	0.71
<u>Soil Moisture</u>	0.18	0.17	0.20	0.21	0.19	0.18	0.21
Terrestrial Water Storage Change	0.25	0.29	0.25	0.26	0.25	0.24	0.25
Precipitation	0.82	0.83	0.82	0.82	0.86	0.86	0.90
Summary	0.55	0.58	0.54	0.58	0.55	0.55	0.57
Albedo	0.76	0.74	0.75	0.77	0.80	0.76	0.79

See Mingquan Mu's poster on Tuesday afternoon:

B23C-0209 in the Moscone West Poster Hall

- Modelers: Confront models with data. Just like voting, do this early and often!
 - Make model evaluation tools and data free and open, facilitating community contributions. It takes a village!
 - Design model experiments and analyses to identify weaknesses and inspire new measurements.
- Data Gatherers: Make data available early and characterize and report <u>all</u> measurement uncertainties.
 - Confront the environment with new sensors, drones, and aerial and space-based instrumentation to answer key questions about mechanisms.
 - Conduct measurements to improve our understanding of processes and inform model development.
- Integrated Assessors: Creatively employ multi-model projections and use results of model evaluation as a lens through which to view predictions of the future.

Model-Data Integration in Action

nge from 3-Year Baseline (<3-Yr old

ument_jul28_aug20.td @ revious1_jul20_sug12.td @ revious2_jul12_sug4.td @

Detect (ALC) Change frem previe

ert_ju/28_aug20.tr • Hous1_ju/28_aug12.tr • Hous2_ju/12_aug4.tr •

Change Product Descriptions

Mountain Time: 1:16 of

References

- F. M. Hoffman, J. Kumar, R. T. Mills, and W. W. Hargrove. Representativeness-based sampling network design for the State of Alaska. *Landscape Ecol.*, 28(8):1567–1586, Oct. 2013. doi: 10.1007/s10980-013-9902-0.
- Y. Q. Luo, J. T. Randerson, G. Abramowitz, C. Bacour, E. Blyth, N. Carvalhais, P. Ciais, D. Dalmonech, J. B. Fisher, R. Fisher, P. Friedlingstein, K. Hibbard, F. Hoffman, D. Huntzinger, C. D. Jones, C. Koven, D. Lawrence, D. J. Li, M. Mahecha, S. L. Niu, R. Norby, S. L. Piao, X. Qi, P. Peylin, I. C. Prentice, W. Riley, M. Reichstein, C. Schwalm, Y. P. Wang, J. Y. Xia, S. Zaehle, and X. H. Zhou. A framework for benchmarking land models. *Biogeosci.*, 9(10):3857–3874, Oct. 2012. doi: 10.5194/bg-9-3857-2012.
- J. T. Randerson, F. M. Hoffman, P. E. Thornton, N. M. Mahowald, K. Lindsay, Y.-H. Lee, C. D. Nevison, S. C. Doney, G. Bonan, R. Stöckli, C. Covey, S. W. Running, and I. Y. Fung. Systematic assessment of terrestrial biogeochemistry in coupled climate-carbon models. *Global Change Biol.*, 15 (9):2462–2484, Sept. 2009. doi: 10.1111/j.1365-2486.2009.01912.x.

Office of Science

This research was sponsored by the Climate and Environmental Sciences Division (CESD) of the Biological and Environmental Research (BER) Program in the U. S. Department of Energy Office of Science, the U. S. Department of Agriculture Forest Service, and the National Science Foundation (AGS-1048890). This research used resources of the National Center for Computational Sciences (NCCS) at Oak Ridge National Laboratory (ORNL), which is managed by UT-Battelle, LLC, for the U. S. Department of Energy under Contract No. DE-AC05-000R22725.