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Next-Generation Ecosystem Experiments (NGEE Arctic)
http://ngee.ornl.gov/

Patterned Arctic Landscape. Thousands 
of square miles in the Arctic are covered by 
networks of polygons that fill with water as 
snow melts early in the year. Slight variations 
in topography affect how water flows across 
the land surface and, in turn, how vegetation 
dynamics and carbon emissions respond to 
changes in soil water distribution. [Oak Ridge 
National Laboratory]

Characterized by vast amounts of carbon stored in permafrost, 
Arctic tundra is rapidly evolving as permafrost degrades in 
response to a changing climate. The mechanisms responsible 

for this system-wide reorganization have been unpredictable and 
difficult to isolate because they are initiated at very fine spatial scales, 
and because of the large number of interactions among the individual 
system components. To address this challenge, the Terrestrial Eco-
system Science (TES) program within the Department of Energy’s 
(DOE) Office of Biological and Environmental Research (BER) is 
supporting a next-generation ecosystem experiment (NGEE).

Overarching NGEE Arctic science question: How does thawing of 
permafrost—and the associated changes in landscape evolution, 
hydrology, soil biogeo chemical processes, and plant community 
succession—affect feedbacks to the climate system?

The goal of the NGEE concept is to improve the representation of 
critical environmental processes in Earth system models (ESMs) by 
focusing on systems that are globally important, climatically sensi-
tive, and understudied or inadequately represented in ESMs. In this 
approach, modeling and process research are closely and iteratively 
connected so that model structure and needs are considered in the 
development of process studies whose outcomes in turn are designed 
to directly inform, challenge, and improve models. Ultimately, the 
NGEE Arctic project will develop a process-rich ecosystem model, 
extending from the bedrock to the top of the vegetative canopy, in 
which the evolution of Arctic ecosystems in a changing climate can 
be modeled at the scale of a high-resolution ESM grid.

Integration Across Scales
Geomorphological features—including thaw lakes, drained thaw 
lake basins, and ice-rich polygonal ground—provide the organizing 

framework for integrating process studies and observations from the 
pore or core scale (micron to tens of centimeters) to plot (meters 
to tens of meters) and landscape (kilometers) scales. Within these 
discrete geomorphological units, mechanistic studies in the field and 
laboratory are targeting four critical and interrelated components—
water, nitrogen, carbon, and energy dynamics—that determine 
whether the Arctic is, or in the future will become, a negative or 
positive feedback to anthropogenically forced climate change. Multi-
scale research activities organized around these components include 
hydrology and geomorphology, vegetation dynamics, biogeochemis-
try, and energy transfer processes.

Hydrology and Geomorphology research activities are focused on 
identifying and quantifying the  coupled hydrogeomorphic processes 
being driven by permafrost thaw and degradation. The resulting 
variations in microtopography affect drainage networks, redistribut-
ing soil moisture at the local scale and across the landscape. This, in 
turn, drives changes in plant ecosystem processes and soil biogeo-
chemistry that affect the amount and ratio of carbon dioxide (CO₂) 
and methane (CH₄) produced in the subsurface through microbial 
decomposition of soil carbon.

Advancing predictive understanding of the structure and function 
of Arctic terrestrial ecosystems in response to climate change

 
Landscapes in Transition.  
A mechanistic understanding of what controls the rates, scales, and 
feedbacks of permafrost degradation is needed for system-scale pre-
diction of permafrost dynamics in response to warming. NGEE Arctic 
research activities are designed to identify and quantify the mechanisms 
underlying proc esses that control carbon and energy transfer in the Arctic 
biosphere, as well as how those processes play out in a changing Arctic 
landscape. [Lawrence Berkeley National Laboratory]

Next-Generation Ecosystem Experiment: 
Arctic Landscapes

ngee.ornl.gov

The Next-Generation Ecosystem Experiments (NGEE Arctic) project is supported by the Office of Biological and
Environmental Research in the DOE Office of Science.

http://ngee.ornl.gov/


Quantitative Sampling Network Design

I Resource and logistical constraints limit the frequency and
extent of observations, necessitating the development of a
systematic sampling strategy that objectively represents
environmental variability at the desired spatial scale.

I Required is a methodology that provides a quantitative
framework for informing site selection and determining the
representativeness of measurements.

I Multivariate spatiotemporal clustering (MSTC) was applied at
the landscape scale (4 km2) for the State of Alaska to
demonstrate its utility for representativeness and scaling.

I An extension of the method applied by Hargrove and Hoffman
for design of National Science Foundation’s (NSF’s) National
Ecological Observatory Network (NEON) domains.



Data Layers

Table: 37 characteristics averaged for the present (2000–2009) and the
future (2090–2099).

Description Number/Name Units Source

Monthly mean air temperature 12 ◦C GCM
Monthly mean precipitation 12 mm GCM

Day of freeze
mean day of year GCM

standard deviation days

Day of thaw
mean day of year GCM

standard deviation days

Length of growing season
mean days GCM

standard deviation days
Maximum active layer thickness 1 m GIPL
Warming effect of snow 1 ◦C GIPL
Mean annual ground temperature
at bottom of active layer

1 ◦C GIPL

Mean annual ground surface tem-
perature

1 ◦C GIPL

Thermal offset 1 ◦C GIPL
Limnicity 1 % NHD
Elevation 1 m SRTM



10 Alaska Ecoregions, Present and Future

1000 km 1000 km

2000–2009 2090–2099
(Hoffman et al., 2013)

Since the random colors are the same in both maps, a change in
color represents an environmental change between the present and
the future.
At this level of division, the conditions in the large boreal forest
become compressed onto the Brooks Range and the conditions on
the Seward Peninsula “migrate” to the North Slope.



20 Alaska Ecoregions, Present and Future

1000 km 1000 km

2000–2009 2090–2099
(Hoffman et al., 2013)

Since the random colors are the same in both maps, a change in
color represents an environmental change between the present and
the future.
At this level of division, the two primary regions of the Seward
Peninsula and that of the northern boreal forest replace the two
regions on the North Slope almost entirely.



NGEE Arctic Site Representativeness

I This representativeness analysis uses the standardized
n-dimensional data space formed from all input data layers.

I In this data space, the Euclidean distance between a sampling
location (like Barrow) and every other point is calculated.

I These data space distances are then used to generate
grayscale maps showing the similarity, or lack thereof, of every
location to the sampling location.

I In the subsequent maps, white areas are well represented by
the sampling location or network, while dark and black areas
as poorly represented by the sampling location or network.

I This analysis assumes that the climate surrogates maintain
their predictive power and that no significant biological
adaptation occurs in the future.



Present Representativeness of Barrow or “Barrow-ness”

1000 km

(Hoffman et al., 2013)

Light-colored regions are well represented and dark-colored regions
are poorly represented by the sampling location listed in red.



Network Representativeness: Barrow + Council

1000 km

(Hoffman et al., 2013)

Light-colored regions are well represented and dark-colored regions
are poorly represented by the sampling location listed in red.



State Space Dissimilarities: 8 Sites, Present (2000–2009)

Table: Site state space dissimilarities for the present (2000–2009).

Toolik Prudhoe
Sites Council Atqasuk Ivotuk Lake Kougarok Bay Fairbanks

Barrow 9.13 4.53 5.90 5.87 7.98 3.57 12.16
Council 8.69 6.37 7.00 2.28 8.15 5.05

Atqasuk 5.18 5.23 7.79 1.74 10.66
Ivotuk 1.81 5.83 4.48 7.90

Toolik Lake 6.47 4.65 8.70
Kougarok 7.25 5.57

Prudhoe Bay 10.38



State Space Dissimilarities: 8 Sites, Present and Future

Table: Site state space dissimilarities between the present (2000–2009)
and the future (2090–2099).

Future (2090–2099)
Toolik Prudhoe

Sites Barrow Council Atqasuk Ivotuk Lake Kougarok Bay Fairbanks

P
re

se
n

t
(2

0
0

0
–

2
0

0
9

) Barrow 3.31 9.67 4.63 6.05 5.75 9.02 3.69 11.67
Council 8.38 1.65 8.10 5.91 6.87 3.10 7.45 5.38

Atqasuk 6.01 9.33 2.42 5.46 5.26 8.97 2.63 10.13
Ivotuk 7.06 7.17 5.83 1.53 2.05 7.25 4.87 7.40

Toolik Lake 7.19 7.67 6.07 2.48 1.25 7.70 5.23 8.16
Kougarok 7.29 3.05 6.92 5.57 6.31 2.51 6.54 5.75

Prudhoe Bay 5.29 8.80 3.07 4.75 4.69 8.48 1.94 9.81
Fairbanks 12.02 5.49 10.36 7.83 8.74 6.24 10.10 1.96



Representativeness: A Quantitative Approach for Scaling

I MSTC provides a quantitative framework for stratifying
sampling domains, informing site selection, and determining
representativeness of measurements.

I Representativeness analysis provides a systematic approach for
up-scaling point measurements to larger domains.

Hoffman, F. M., J. Kumar, R. T. Mills, and
W. W. Hargrove (2013), “Representativeness-
Based Sampling Network Design for the State
of Alaska.” Landscape Ecol., 28(8):1567–1586.
doi:10.1007/s10980-013-9902-0.

Received US-IALE’s 2014 Outstanding Paper
in Landscape Ecology Award!

http://dx.doi.org/10.1007/s10980-013-9902-0
http://dx.doi.org/10.1007/s10980-013-9902-0


Barrow Environmental Observatory (BEO)

(Langford et al., in prep)

Representativeness map for vegetation sampling points in A, B, C, and D
sampling area with phenology (left) and without (right), based on
WorldView2 satellite images for the year 2010 and LiDAR data.

See Zach Langford’s poster on Thursday morning:
B41I-0166 in the Moscone West Poster Hall



Barrow Environmental Observatory (BEO)
LichenDry Tundra Sedge

Deciduous ShrubsForb

Wet Tundra Graminoid

Site A

Mosses

Evergreen Shrubs Bare Ground

(Langford et al., in prep)

Example plant functional type (PFT) distributions scaled up from
vegetation sampling locations.

See Zach Langford’s poster on Thursday morning:
B41I-0166 in the Moscone West Poster Hall



ForestGEO Network Global Representativeness

(Anderson-Teixeira et al., in press)

Map illustrating ForestGEO network representation of 17 bioclimatic,
edaphic, and topographic conditions globally. Light-colored regions are
well represented and dark-colored regions are poorly represented by the
ForestGEO sampling network. Stippling covers non-forest areas.

See Damian Maddalena’s poster on Friday morning:
B51B-0029 in the Moscone West Poster Hall

http://dx.doi.org/10.1111/gcb.12712


Triple-Network Global Representativeness

(Maddalena et al., in prep)

Map indicates which sampling network offers the most representative
coverage at any location. Every location is made up of a combination of
three primary colors from Fluxnet (red), ForestGEO (green), and
RAINFOR (blue).

See Damian Maddalena’s poster on Friday morning:
B51B-0029 in the Moscone West Poster Hall
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What is a Benchmark?

I A Benchmark is a quantitative
test of model function achieved
through comparison of model
results with observational data.

I Acceptable performance on
benchmarks is a necessary but
not sufficient condition for a
fully functioning model.

I Functional benchmarks offer
tests of model responses to
forcings and yield insights into
ecosystem processes.

I Effective benchmarks must draw
upon a broad set of independent
observations to evaluate model
performance on multiple
temporal and spatial scales.

Models often fail to capture the amplitude of the
seasonal cycle of atmospheric CO2.

Models may reproduce correct responses over only a
limited range of forcing variables.

(Randerson et al., 2009)



I We co-organized inaugural meeting and ∼45 researchers participated from the
United States, Canada, the United Kingdom, the Netherlands, France, Germany,
Switzerland, China, Japan, and Australia.

I ILAMB Goals: Develop internationally accepted benchmarks for model
performance, advocate for design of open-source software system, and
strengthen linkages between experimental, monitoring, remote sensing, and
climate modeling communities. Initial focus on CMIP5 models.

I Provides methodology for model–data comparison and baseline standard for
performance of land model process representations (Luo et al., 2012).



General Benchmarking Procedure

(Luo et al., 2012)



Example Benchmark Score Sheet from C-LAMP

Models

B
G

C
 D

atasets

Uncertainty Scaling Total
Metric Metric components of obs. mismatch score Sub-score CASA′ CN

LAI Matching MODIS observations 15.0 13.5 12.0
• Phase (assessed using the month of maximum LAI) Low Low 6.0 5.1 4.2
• Maximum (derived separately for major biome classes) Moderate Low 5.0 4.6 4.3
• Mean (derived separately for major biome classes) Moderate Low 4.0 3.8 3.5

NPP Comparisons with field observations and satellite products 10.0 8.0 8.2
• Matching EMDI Net Primary Production observations High High 2.0 1.5 1.6
• EMDI comparison, normalized by precipitation Moderate Moderate 4.0 3.0 3.4
• Correlation with MODIS (r2) High Low 2.0 1.6 1.4
• Latitudinal profile comparison with MODIS (r2) High Low 2.0 1.9 1.8

CO2 annual cycle Matching phase and amplitude at Globalview flash sites 15.0 10.4 7.7
• 60◦–90◦N Low Low 6.0 4.1 2.8
• 30◦–60◦N Low Low 6.0 4.2 3.2
• 0◦–30◦N Moderate Low 3.0 2.1 1.7

Energy & CO2 fluxes Matching eddy covariance monthly mean observations 30.0 17.2 16.6
• Net ecosystem exchange Low High 6.0 2.5 2.1
• Gross primary production Moderate Moderate 6.0 3.4 3.5
• Latent heat Low Moderate 9.0 6.4 6.4
• Sensible heat Low Moderate 9.0 4.9 4.6

Transient dynamics Evaluating model processes that regulate carbon exchange 30.0 16.8 13.8
on decadal to century timescales
• Aboveground live biomass within the Amazon Basin Moderate Moderate 10.0 5.3 5.0
• Sensitivity of NPP to elevated levels of CO2: comparison Low Moderate 10.0 7.9 4.1

to temperate forest FACE sites
• Interannual variability of global carbon fluxes: High Low 5.0 3.6 3.0

comparison with TRANSCOM
• Regional and global fire emissions: comparison to High Low 5.0 0.0 1.7

GFEDv2
Total: 100.0 65.9 58.3

(Randerson et al., 2009)



Biogeochemistry–Climate Feedbacks Scientific Focus Area



ILAMB Prototype Diagnostics System
An initial ILAMB prototype has been developed by Mingquan Mu at UCI.

I Current variables:
Aboveground live biomass (North America FIA, tropical Saatchi et al.), Burned

area (GFED3), CO2 (NOAA GMD, Mauna Loa), Global net land flux (GCP),

Gross primary production (Fluxnet-MTE), Leaf area index (AVHRR, MODIS),

Net ecosystem exchange (Fluxnet), Respiration (Fluxnet), Soil C (HWSD,

NCSCDv2), Evapotranspiration (LandFlux, GLEAM, MODIS), Latent heat

(Fluxnet-MTE), Soil moisture (ESA), Terrestrial water storage change

(GRACE), Precipitation (GPCP2), Albedo (MODIS, CERES), Surface up/down

SW/LW radiation (CERES, WRMC.BSRN), Sensible heat (Fluxnet), Surface

air temperature (CRU).

I Graphics and scoring systems:
• Annual mean, Bias, RMSE, seasonal cycle, spatial distribution, interannual
coeff. of variation and variability, long-term trend scores

• Global maps, variable to variable, and time series comparisons

I Software:
Freely distributed, designed to be user friendly and to enable easy addition of

new variables (Mu, Hoffman, Riley, Koven, Lawrence, Randerson)



ILAMB Prototype Layout: Global Variables

See Mingquan Mu’s poster on Tuesday afternoon:
B23C-0209 in the Moscone West Poster Hall



Take Home Message

I Modelers: Confront models with data. Just like voting, do
this early and often!

I Make model evaluation tools and data free and open,
facilitating community contributions. It takes a village!

I Design model experiments and analyses to identify weaknesses
and inspire new measurements.

I Data Gatherers: Make data available early and characterize
and report all measurement uncertainties.

I Confront the environment with new sensors, drones, and aerial
and space-based instrumentation to answer key questions
about mechanisms.

I Conduct measurements to improve our understanding of
processes and inform model development.

I Integrated Assessors: Creatively employ multi-model
projections and use results of model evaluation as a lens
through which to view predictions of the future.



Model-Data Integration in Action
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