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Next-Generation Ecosystem Experiments (NGEE Arctic)
http://ngee.ornl.gov/
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Quantitative Sampling Network Design

» Resource and logistical constraints limit the frequency and
extent of observations, necessitating the development of a
systematic sampling strategy that objectively represents
environmental variability at the desired spatial scale.

> Required is a methodology that provides a quantitative
framework for informing site selection and determining the
representativeness of measurements.

» Multivariate spatiotemporal clustering (MSTC) was applied at
the landscape scale (4 km?) for the State of Alaska to
demonstrate its utility for representativeness and scaling.

» An extension of the method applied by Hargrove and Hoffman
for design of National Science Foundation's (NSF's) National
Ecological Observatory Network (NEON) domains.



Table: 37 characteristics averaged for the present (2000-2009) and the
future (2090-2099).

Description Number/Name Units Source
Monthly mean air temperature 12 °C GCM
Monthly mean precipitation 12 mm GCM
mean day of year GCM

Day of freeze standard deviation days
mean day of year GCM

Day of thaw standard deviation days
Length of growing season mean days GeM

& & £ standard deviation days
Maximum active layer thickness 1 m GIPL
Warming effect of snow 1 °C GIPL
Mean annual ground temperature 1 oC GIPL

at bottom of active layer
Mean annual ground surface tem-

1 °C GIPL
perature
Thermal offset 1 °C GIPL
Limnicity 1 % NHD
Elevation 1 m SRTM




10 Alaska Ecoregions, Present and Future

2000-2009 2090-2099
(Hoffman et al., 2013)

Since the random colors are the same in both maps, a change in
color represents an environmental change between the present and
the future.

At this level of division, the conditions in the large boreal forest
become compressed onto the Brooks Range and the conditions on
the Seward Peninsula “migrate” to the North Slope.



20 Alaska Ecoregions, Present and Future

2000-2009 2090-2099
(Hoffman et al., 2013)

Since the random colors are the same in both maps, a change in
color represents an environmental change between the present and
the future.

At this level of division, the two primary regions of the Seward
Peninsula and that of the northern boreal forest replace the two
regions on the North Slope almost entirely.



NGEE Arctic Site Representativeness

> This representativeness analysis uses the standardized
n-dimensional data space formed from all input data layers.

> In this data space, the Euclidean distance between a sampling
location (like Barrow) and every other point is calculated.

» These data space distances are then used to generate
grayscale maps showing the similarity, or lack thereof, of every
location to the sampling location.

> In the subsequent maps, white areas are well represented by
the sampling location or network, while dark and black areas
as poorly represented by the sampling location or network.

» This analysis assumes that the climate surrogates maintain
their predictive power and that no significant biological
adaptation occurs in the future.



Present Representativeness of Barrow or “Barrow-ness”
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(Hoffman et al., 2013)

Light-colored regions are well represented and dark-colored regions
are poorly represented by the sampling location listed in red.



Network Representativeness: Barrow + Council

1000 km
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(Hoffman et al., 2013)

Light-colored regions are well represented and dark-colored regions
are poorly represented by the sampling location listed in red.



State Space Dissimilarities: 8 Sites, Present (2000-2009)

Table: Site state space dissimilarities for the present (2000-2009).

Toolik Prudhoe
Sites Council Atqasuk Ivotuk Lake Kougarok Bay Fairbanks

Barrow 9.13 453 590 5.87 7.98 3.57 12.16

Council 8.69 6.37 7.00 2.28 8.15 5.05
Atgasuk 5.18 5.23 7.79 1.74 10.66
Ivotuk 1.81 5.83 4.48 7.90
Toolik Lake 6.47 4.65 8.70
Kougarok 7.25 5.57

Prudhoe Bay 10.38




State Space Dissimilarities: 8 Sites, Present and Future

Table: Site state space dissimilarities between the present (2000-2009)

and the future (2090-2099).

Future (2090-2099)

Toolik Prudhoe
Sites Barrow Council Atqasuk lvotuk Lake Kougarok Bay Fairbanks
@ Barrow 3.31 9.67 4.63 6.05 b5.75 9.02 3.69 11.67
IS Council 838 1.65 810 591 6.87 3.10 7.45 5.38
< Atqasuk 6.01 9.33 242 546 5.26 8.97 2.63 10.13
S lvotuk 7.06 7.17 583 153 2.05 7.25 4.87 7.40
& Toolik Lake 7.19 7.67 6.07 248 1.25 7.70 5.23 8.16
IS Kougarok 7.29  3.05 6.92 557 6.31 2,51 6.54 5.75
:"J', Prudhoe Bay 5.29 8.80 3.07 4.75 4.69 8.48 1.94 9.81
a Fairbanks 12.02 5.49 10.36 7.83 8.74 6.24 10.10 1.96




Representativeness: A Quantitative Approach for Scaling

» MSTC provides a quantitative framework for stratifying
sampling domains, informing site selection, and determining
representativeness of measurements.

> Representativeness analysis provides a systematic approach for
up-scaling point measurements to larger domains.

RESEARCH ARTICLE
Representativeness-based sampling network design
for the State of Alaska

Forrest M. Hoftman - Hitendea Kursa -
Richard T, Ml - Wilam W. Hargrove

Hoffman, F. M., J. Kumar, R. T. Mills, and
W. W. Hargrove (2013), “Representativeness-
Based Sampling Network Design for the State
of Alaska.” Landscape Ecol., 28(8):1567-1586.
doi:10.1007/s10980-013-9902-0.
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Barrow Environmental Observatory (BEO)

Phenology Representativeness July 26, 2010 Representativeness
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(Langford et al., in prep)

Representativeness map for vegetation sampling points in A, B, C, and D
sampling area with phenology (left) and without (right), based on
WorldView? satellite images for the year 2010 and LiDAR data.

See Zach Langford’s poster on Thursday morning:
B411-0166 in the Moscone West Poster Hall



Barrow Environmental Observatory (BEO)

(Langford et al., in prep)
Example plant functional type (PFT) distributions scaled up from
vegetation sampling locations.

See Zach Langford’s poster on Thursday morning:
B411-0166 in the Moscone West Poster Hall



ForestGEO Network Global Representativeness

y v
(Anderson-Teixeira et al., in press)

Map illustrating ForestGEO network representation of 17 bioclimatic,
edaphic, and topographic conditions globally. Light-colored regions are
well represented and dark-colored regions are poorly represented by the
ForestGEO sampling network. Stippling covers non-forest areas.

See Damian Maddalena’s poster on Friday morning:
B51B-0029 in the Moscone West Poster Hall


http://dx.doi.org/10.1111/gcb.12712

Triple-Network Global Representativeness
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(Maddalena et al., in prep)

Map indicates which sampling network offers the most representative
coverage at any location. Every location is made up of a combination of
three primary colors from Fluxnet (red), ForestGEO (green), and
RAINFOR (blue).

See Damian Maddalena’s poster on Friday morning:
B51B-0029 in the Moscone West Poster Hall
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What is a Benchmark?

Interannual Variability of Atmospheric Carbon Dioxide

» A Benchmark is a quantitative i‘% 4 o 1
test of model function achieved o2 kel
through comparison of model % 72:
results with observational data. g Ll

> Acceptable performance on § Tsa"TISI\i"d\'M:MT“Tﬂ L1 0]
benchmarks is a necessary but A

. o age Models often fail to capture the amplitude of the
not sufficient condition for a seasonal cycle of atmospheric CO».
fully functioning model. T T T

» Functional benchmarks offer 100 IR 1
tests of model responses to og
forcings and yield insights into £7T |
ecosystem processes. :iL sool. |

» Effective benchmarks must draw £
upon a broad set of independent 3

0 L L L L
0 500 1000 1500 2000
Precipitation (mm yr”)

observations to evaluate model

performa nce on multiple Models may reproduce correct responses over only a
limited range of forcing variables.

temporal and spatial scales. (Randerson et al., 2009)
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> We co-organized inaugural meeting and ~45 researchers participated from the
United States, Canada, the United Kingdom, the Netherlands, France, Germany,
Switzerland, China, Japan, and Australia.

> ILAMB Goals: Develop internationally accepted benchmarks for model
performance, advocate for design of open-source software system, and
strengthen linkages between experimental, monitoring, remote sensing, and
climate modeling communities. /Initial focus on CMIP5 models.

» Provides methodology for model-data comparison and baseline standard for
performance of land model process representations (Luo et al., 2012).



General Benchmarking Procedure

arameter
* State variables
* Rate variables
* Responses
* Feedback

Process
* Biophysics
* Hydrology
* Biogeochemistry
* Vegetation dynamics

l Observations
Experimental results
Data-model products

* Temporal scale
* Spatial cover
* Error structure

Relationship and patterns

Metrics of performance skills

* A priori thresholds
= Scoring systems

considering weights for
different processes and
data sets

To determine model’s
* Acceptability

/* Ranking

¢ Strength and deficiency

(Luo et al., 2012)



Example Benchmark Score Sheet from C-LAMP

Models ——>

Uncertainty  Scaling  Total

Metric Metric cc of obs. score  Sub-score CASA’ CN
LAI Matching MODIS observations 15.0 135 12.0
e Phase (assessed using the month of maximum LAI) Low Low 6.0 51 4.2
o8} « Maximum (derived separately for major biome classes) Moderate Low 5.0 46 4z
m o Mean (derived separately for major biome classes) Moderate Low 4.0 38 3.
O NPP Comparisons with field observations and satellite products 10.0 8.0 8.2
« Matching EMDI Net Primary Production observations ~ High High 20 15 16
U  EMDI comparison, i by precipitati 4.0 3.0 3.
m o Correlation with MODIS (?) High Low 2.0 16 14
= « Latitudinal profile comparison with MODIS t) High Low 2.0 1.9 1.8
m CO, annual cycle  Matching phase and amplitude at Globalview flash sites 15.0 10.4 7.7
wn * 60°-90N Low Low 6.0 4.1 28
D *30-60°'N Low Low 6.0 4.2 3.2
—t * 0°-30N Moderate Low 3.0 21 17
w Energy & CO fluxes Matching eddy covariance monthly mean observations 30.0 17.2 16.6
« Net ecosystem exchange Low High 6.0 25 21
« Gross primary production Moderate  Moderate 6.0 3.4 3.
 Latent heat Low Moderate 9.0 6.4 6.2
* Sensible heat Low Moderate 9.0 4.9 4.€
Transient dynamics Evaluating model processes that regulate carbon exchange 30.0 16.8 13.8
on decadal to century timescales
« Aboveground live biomass within the Amazon Basin Moderate  Moderate 10.0 53 5.
« Sensitivity of NPP to elevated levels of GQzomparison Low Moderate 10.0 79 4.1
to temperate forest FACE sites
« Interannual variability of global carbon fluxes: High Low 5.0 36 3.0
comparison with TRANSCOM
« Regional and global fire emissions: comparison to High Low 5.0 0.0 17
\/ GFEDv2
Total: 100.0 65.9 58.3

(Randerson et al., 2009)



Biogeochemistry—Climate Feedbacks Scientific Focus Area
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ILAMB Prototype Diagnostics System

An initial [ILAMB prototype has been developed by Mingquan Mu at UCL.
> Current variables:

Aboveground live biomass (North America FIA, tropical Saatchi et al.), Burned
area (GFED3), CO> (NOAA GMD, Mauna Loa), Global net land flux (GCP),
Gross primary production (Fluxnet-MTE), Leaf area index (AVHRR, MODIS),
Net ecosystem exchange (Fluxnet), Respiration (Fluxnet), Soil C (HWSD,
NCSCDv2), Evapotranspiration (LandFlux, GLEAM, MODIS), Latent heat
(Fluxnet-MTE), Soil moisture (ESA), Terrestrial water storage change
(GRACE), Precipitation (GPCP2), Albedo (MODIS, CERES), Surface up/down
SW/LW radiation (CERES, WRMC.BSRN), Sensible heat (Fluxnet), Surface
air temperature (CRU).

» Graphics and scoring systems:
e Annual mean, Bias, RMSE, seasonal cycle, spatial distribution, interannual
coeff. of variation and variability, long-term trend scores

e Global maps, variable to variable, and time series comparisons

> Software:
Freely distributed, designed to be user friendly and to enable easy addition of
new variables (Mu, Hoffman, Riley, Koven, Lawrence, Randerson)

P ONE

Los Alamos



ILAMB Prototype Layout: Global Variables

Global Variables (Info)

| ‘ MeanModel | bec-csm1-1-m ‘ BNU-ESM | CanESM2 | CESM1-BGC | GFDL-ESM26G | HadGEM:
| Aboveuround Live 0.88 | ‘ 0.14 | 0.81 | 0.68 | 0.81 | 0.86
Biomass
[ i | ws | \ | = |
| Carbon Dioxide ‘ 0.88 | ‘ 0.53 | 0.0 | 0.86 | 0.96 |
Global Net Land 0.25 0.25 0.32 0.22 0.40 0.63
Flux
Gross Primary 0.80 0.74 0.72 0.74 0.77 0.72 0.75
Production : " " " . " "
| Leaf Area Index ‘ 0.59 | 0.64 ‘ 0.30 | o.78 | 0.53 | 0.33 | 0.53
Net Ecosystem 0.36 0.20 0.19 0.16 0.28 0.64 0.28
Exchange
LEcosystem 0.78 0.71 0.78 0.75 0.74 0.70 0.77
Respiration
| Seil Carhon ‘ 0.71 | - ‘ 0.35 | 0.73 | 0.31 | 0.74 | 0.63
| Summary ‘ 0.63 | 0.59 ‘ 0.41 | 0.65 | 0.54 | 0.67 | 0.64
|E‘vigntrin!!iritinn ‘ 0.75 | 0.83 ‘ 0.74 | o0.82 | 0.73 | 0.76 | 0.77
| Latent Heat ‘ 0.77 | 0.79 ‘ 0.71 | 0.80 | 0.71 | 0.72 | 0.71
| Soil Moisture ‘ 0.18 | 0.17 ‘ 0.20 | 0.21 | 0.19 | 0.18 | 0.21
Tecrestrial Water 0.25 0.29 0.25 0.26 0.25 0.24 0.25
Storage Change
| Precipitation ‘ 0.82 | 0.83 ‘ 0.82 | o0.82 | 0.86 | 0.88 | 0.90
| Summary ‘ 0.55 | 0.58 ‘ 0.54 | 0.58 | 0.55 | 0.55 | 0.57
| Albedo ‘ 0.76 | 0.74 ‘ 0.75 0.77 | 0.80 | 0.76 | 0.79

See Mingquan Mu's poster on Tuesday afternoon:
B23C-0209 in the Moscone West Poster Hall
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Take Home Message

» Modelers: Confront models with data. Just like voting, do
this early and often!
» Make model evaluation tools and data free and open,
facilitating community contributions. It takes a village!
» Design model experiments and analyses to identify weaknesses
and inspire new measurements.
» Data Gatherers: Make data available early and characterize
and report all measurement uncertainties.
» Confront the environment with new sensors, drones, and aerial

and space-based instrumentation to answer key questions
about mechanisms.

» Conduct measurements to improve our understanding of
processes and inform model development.
> Integrated Assessors: Creatively employ multi-model
projections and use results of model evaluation as a lens
through which to view predictions of the future.
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