Multi-Scale Synthesis and Terrestrial Biospheric Model Intercomparison Project (MsTMIP)

MsTMIP Team:

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deborah Huntzinger (Science PI)</td>
<td>University of Michigan</td>
</tr>
<tr>
<td>Anna Michalak (PI)</td>
<td></td>
</tr>
<tr>
<td>Kevin Schaefer</td>
<td>NSDC, Univ. of Colorado</td>
</tr>
<tr>
<td>Andrew Jacobson</td>
<td>NOAA, Univ. of Colorado</td>
</tr>
<tr>
<td>Mac Post; Robert Cook; Yaxing Wei</td>
<td>Oak Ridge National Lab</td>
</tr>
</tbody>
</table>

Collaborators

- Peter Thornton
- Forrest Hoffman
- Rama Nemani
- Weile Wang
- Josh Fisher
- Philippe Ciais
- Nicolas Viovy
- Philippe Peylin
What is driving the variability seen in the model estimates?

Terrestrial Biospheric Modeling Inputs
- **Consistent boundary conditions**
 - Soil properties
 - Vegetation type
 - Land management
 - Elevation
- **Consistent forcing data**
 - Daily weather
 - CO_2 concentration pathways
 - N-deposition history
 - Land-use/land cover changes
- **Common implementation protocol**
 - Spin-up procedures
 - Ensemble generation
 - Factorial model experiments

Model Outputs
- Standard units, space/time resolution
- netCDF/CF-1 format

Inverse Model Outputs
- Standard units, space/time resolution
- netCDF/CF-1 format

Model Simulations
- Site, Regional Global

Observations and Measurements
- **Global**
 - Atmospheric CO_2 measurements
 - Satellite observations
 - Global weather models
- **Regional**
 - Regional weather models
 - Continental CO_2 measurements
 - Forest inventories
 - Agricultural production statistics
- **Site**
 - Intensive field campaigns
 - Eddy covariance fluxes
 - Local survey data

Analysis: Diagnostic benchmarks, fingerprint analysis, prediction inter-comparison
MsTMIP Overview

• Three scales of estimation
 – Global (0.5° by 0.5°)
 – Regional (North America) (0.25° by 0.25°)
 – Site level – with regional meteorology

• Consistent driver data

• Formal protocol

• Model evaluation framework built off of C-LAMP (now iLAMB)

• Model team support (mini-grants)
Baseline Simulations

<table>
<thead>
<tr>
<th>Domain</th>
<th>Simulation Name</th>
<th>Simulation Period</th>
<th>Climate Forcing</th>
<th>Land-Use & Disturbance History</th>
<th>Atmospheric CO$_2$</th>
<th>Nitrogen Deposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global (0.5° x 0.5°)</td>
<td>BG1</td>
<td>1901-2008</td>
<td>CRU+NCEP</td>
<td>Time-varying</td>
<td>Time-varying</td>
<td>Time-varying</td>
</tr>
<tr>
<td>North America</td>
<td>BR1</td>
<td>1980-2008</td>
<td>NARR1</td>
<td>Time-varying</td>
<td>Time-varying</td>
<td>Time-varying</td>
</tr>
</tbody>
</table>

Provide a model’s best attempt at representing the spatial and temporal distribution of land-atmosphere carbon flux as influenced by:

Climate, land-use / disturbance, and nutrient deposition
Sensitivity Simulations

<table>
<thead>
<tr>
<th>Domain</th>
<th>Simulation Name</th>
<th>Simulation Period</th>
<th>Climate Forcing</th>
<th>Land-Use & Disturbance History</th>
<th>Atmospheric CO₂</th>
<th>Nitrogen Deposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global (0.5° by 0.5°)</td>
<td>SG1</td>
<td></td>
<td></td>
<td>Constant</td>
<td>Constant</td>
<td>Constant</td>
</tr>
<tr>
<td></td>
<td>SG2</td>
<td>1901-2008</td>
<td>CRU+NCEP</td>
<td>Time-Varying</td>
<td>Constant</td>
<td>Constant</td>
</tr>
<tr>
<td></td>
<td>SG3</td>
<td></td>
<td></td>
<td>Time-Varying</td>
<td>Time-Varying</td>
<td>Constant</td>
</tr>
<tr>
<td>North America (0.25° by 0.25°)</td>
<td>SR1</td>
<td></td>
<td></td>
<td>Constant</td>
<td>Constant</td>
<td>Constant</td>
</tr>
<tr>
<td></td>
<td>SR2</td>
<td>1980-2008</td>
<td>NARR¹</td>
<td>Time-Varying</td>
<td>Constant</td>
<td>Constant</td>
</tr>
<tr>
<td></td>
<td>SR3</td>
<td></td>
<td></td>
<td>Time-Varying</td>
<td>Time-Varying</td>
<td>Constant</td>
</tr>
</tbody>
</table>

Help to **partition** observed NEE among processes such as climate variability, CO₂ fertilization, nitrogen limitation, current land management, and the recovery from historical land use and disturbance.